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  We introduce the latent diffusion model used in medical 

ultrasound image synthesis. We point out that precision is 

the issue, and installing ultrasound images was completed 

with an accuracy of 97.47% since ultrasound demands 
greater accuracy. It has some particular disadvantages 

because it operates in real-time and requires operator 

settings. Considering these challenges, our model has a lot 
of promise to provide accurate and lifelike ultrasound 

images. Even though it is hard to calculate the precise 

answer for this optimization, applying the backpropagation 
method merely once can produce an approximation. In 

order to train a diffusion model with the value and 

outcomes (FID: 2.870, CLIP: 0.209, SSIM: 0.9923, and 

LPIPS: 0.92) that we promised, we generated synthetic 
images of roughly 300 ultrasound images. were acquired. 

Expanding the use of artificial intelligence in medical 

imaging is the aim of this endeavor. Since this is a novel 
problem, the study will serve as a foundation and source of 

inspiration for researchers looking into possible 

applications of diffusion models in medical image 

production. The URL 
https://www.kaggle.com/datasets/suraahmed56/computer-

vision-medical-images provides access to synthetic images. 

K e y w o r d s :  

Diffusion Models, Image  

Synthesis, Reverse Diffusion, 
Forward Process. Ultrasound 

Images. 
 

 

 

1.   Introduction 

             Diffusion Models with latent variables motivated by ideas in nonequilibrium thermodynamics 

are probabilistic models [1],[2],[3],[4]. Diffusion Models provide high-quality image synthesis 

findings. Diffusion Models most outstanding performance was achieved using a weighted 
variational bound during training, which was made possible by a new relationship between 

denoising score matching and diffusion probabilistic models 
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Fig. 1. Selected samples from our best Image model. 
 

 

       The public's attention has been drawn to guided image synthesis with user notes due to large-

scale models of language-image (LLI), which have recently been developed [5],[6],[7]. By merging 
unsupervised learning with text-based training learning from a reference image, usually a painting 

with thick outlines.  

        New users have control over the contents of the final image [8]. The user can choose the final 
scene's coloring combination with the attached rough painting outlines, while the text timely 

ascertains the general semantics of the image[9]. Examine the information challenge in a novel and 

captivating way [10]. Training these models aims to remove noise from noisy inputs [11]. When an 

input is fully noisy, and no information from the input is retained, a DM creates a new sample[12]. 
However, when a DM is applied to a partially noisy input, some of the noisy input's information is 

preserved, and the denoising process is conditioned on it. The model attempts to reproduce the 

input[13]. The amount of noise could be viewed as a variable information congestion[14],[15]. 
Unlike a property of the trained model itself, the issue during model inference is something we can 

alter externally, such as the size of the latent space in an autoencoder [16]. This work investigates 

several diffusion model topologies and how well they produce artificial images that closely mimic 

accurate data.  

       High-resolution, photorealistic image production is still a significant challenge in image 

synthesis and computational creativity. Generative models (LDMs) and conventional convolutional 

neural networks (CNNs) have shown tremendous progress in image-generating challenges. 
However, when scaling up to high-resolution outputs, these methods frequently run into problems, 

including artifacts that take away from the photorealism of the synthesized images, loss of detail, 

and unnatural textures. Furthermore, these models may offer little control over the production 
process, making it challenging to direct the synthesis process per particular user requirements or to 

alter specific elements of the created images without degrading the overall coherence and quality. 

Latent Diffusion Models (LDMs) have become a viable solution to these problems by fusing the 
effectiveness of latent space representations with the advantages of diffusion models. Nevertheless, 

the use of LDMs in guided, high-resolution image synthesis presents a unique set of issues, such as 

the requirement for significant computational resources, the difficulty of preserving high fidelity to 

the guiding input in the latent space, and the challenge of making sure that the generated images are 

realistic and diverse while abiding by predetermined guidelines or constraints. 

        This research aims to tackle these problems by developing advanced techniques and 

methodologies for high-resolution guided image synthesis using latent diffusion model technology. 
(Section 3.2) specifically, seeks to enhance the capability of LDMs to generate photorealistic 

images at high resolutions, improve the efficiency and scalability of the synthesis process, and 

refine the ability to control and guide the image generation process. The goal is to enable the 
production of high-quality, high-resolution images that meet specific user-defined criteria, opening 

up new possibilities for applications in areas such as digital art, entertainment, and virtual reality.                                                                    
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         We also discuss potential applications of these techniques to typical application issues such as 

data scarcity and motion artifacts. We also investigate the possible uses of synthetic images in 

teaching and research. The investigation's findings provide insight into the bright future of model 
diffusion in image synthesis. With an emphasis on applying diffusion models, this study offers 

multiple essential contributions to image synthesis. The following are the research's contributions:   

  

• Diffusion models are frequently employed in the field of technology adoption research to 
examine how new technologies are embraced by people, groups, or society. For 

companies, legislators, and designers of technology, this information is essential. 

• Policy Development: Diffusion models are used to help create policies that aim to 

encourage and make it easier for positive innovations to be adopted in areas like public 
health, education, and technology. In situations where prompt adoption is essential to the 

well-being of society, this is especially pertinent.  

• Progress in Image Synthesis: By presenting and investigating the use of cutting-edge 

diffusion models, this work makes a substantial contribution to the field of image 

synthesis. This gives rise to a novel solution to the age-old problem of safely and 
effectively obtaining excellent-quality photographs. 

• Common Challenges Risk mitigation: The research explores how diffusion models might 

help reduce common problems such as data shortages and motion artifact impact. In 

situations where patient mobility or insufficient data are usually issues, it provides ways 
to enhance image quality. 

• Improved Image Fidelity: Diffusion models have an amazing capacity to                       

produce images with extraordinary fidelity, according to the analysis. This helps provide 

synthetic ultrasound images that are highly similar to real-world pictures, which is 
advantageous for research and clinical applications. 

• Forecast Capabilities: Diffusion models can be used to forecast the future adoption of 

new inventions by analyzing historical adoption trends and comprehending the relevant 

elements. To properly plan and strategize, this is useful for corporations, legislators, and 

consumers. 

 
     The paper is organized as follows: Section 2 explains the literature review. Section 3 shows the 
methodology of the Latent Diffusion Model technique in four sections (3.1. Forward process, 3.2. 

Additional input z for conditioning, 3.3. Reverse process, and 3.4modified from the trained 

sampling diffusion model). Section 4 states:  Experiments with the DMs. Section 5 shows the 

discussion and conclusion. 

2. Related work  

    Numerous research studies in this area synthesize and play a vital part in this endeavor by 

making it possible to create synthetic images equivalent to actual ones. A group of deep generative 

models called diffusion models has shown great promise and excels in image synthesis[17]. They 

have advanced computer vision research in many fields, such as enhancing images. 

        In a paper Evangelos Ntavelis et al. [18] A novel method for producing detailed and static 3D 
objects is put forth by the authors. A 3D auto-decoder structure forms the basis of their approach. 

This method also makes use of a 3D auto-decoder that learns embeddings in the latent space. After 

decoding these embeddings, a volumetric representation can be created, enabling geometric display 
and a consistent look. The latent space contains embedded features from the target dataset. This 

makes decoding into 3D representations efficient. Because this approach can handle both solid and 

articulated objects, it also provides versatility. It can handle a wide variety of datasets because it is 

sufficiently broad. It's interesting that this strategy can function both with and without camera 
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information in any case. During training, it effectively picks up camera information as needed. The 

evaluation findings demonstrate that, on various datasets and benchmarks, the created 3D assets 

beat state-of-the-art alternatives. 

     Ling Yang et al. [19] introduce CONPREDIFF, an original method to enhance diffusion-

based image synthesis by incorporating context prediction. Following the diffusion denoising 

blocks of the training stage, we explicitly reinforce each point to use a context decoder to forecast 

Next, separate the decoder for inference from its neighborhood context (e.g., multi-hop features, 

tokens, or pixels). Moreover, for this reason, each point may repeat itself more precisely because 

it maintains its semantic connections to the surrounding context. 

   Yanyu Li et al.[20] Our generic solution tackles these problems. It is the first of its type, 

unlocking Diffusion models from textual to image on portable gadgets in under two seconds. We 

achieve this by refining step distillation and creating a thriving network architecture. In particular, 

we identify the redundant parts of the original model and use data distillation to reduce the 

computation of the image decoder to propose an efficient UNet. In addition, we investigate 

several training approaches and incorporate regularization using classifier-free guidance to 

improve the step distillation further. Our extensive MS-COCO experiments demonstrate that our 

model has eight denoising steps.  

               Weijia Wu et al.[21] Using text-guided image synthesis, this approach expands on the pre-

trained diffusion model to generate perceptual data. We demonstrate how a decoder module can 

efficiently decode the diffusion model's extensive latent code into precise perception annotations. 

By training the decoder with less than 1% (about 100 images) of manually labeled photos, an 
infinitely large annotated dataset can be produced. Afterward, these artificial data sets could be 

used to train various perception models for further tasks. Provide rich and dense pixel-wise 

label datasets for various downstream tasks, including instance, semantic, and depth estimation to 
show that the recommended approach is effective. It accomplishes two key goals: (1) it produces 

cutting-edge outcomes on instance and semantic segmentation, and (2) it is notably more resilient. 

  
    An effective alternative that offers a solid framework for the synthesis of high-quality images 

is the diffusion model. The paper "Cascaded Diffusion Models for High Fidelity Image 

Generation" examines this innovative technique" paper Jonathan Ho et al.[22] which demonstrates 

how effectively class-conditional images on the ImageNet dataset may be generated. The paper 

solves frequent problems such compounding errors throughout the sampling process by providing 

conditioning augmentation, a novel technique for data augmentation. Using a multi-step super-

resolution technique, exhibits greater performance in high-fidelity picture production with 

improved FID scores and classification accuracy. The outcomes demonstrate notable enhancements 

in image quality, surpassing cutting-edge models like as BigGAN-deep and VQ-VAE-. 

       Promising answers are provided by recent developments in generative deep learning, namely in 

the area of diffusion models. In order to effectively address The paper by Alexander Shmakov et 

al.[23] A unique method called end-to-end latent variable diffusion models (LVDDMs) is 

presented, which combines the advantages of diffusion processes with the inverse problems of 
high-energy physics. latent variable models. provide a new unified architecture called latent 

variational diffusion models (LVDDMs) that integrates A thorough variable framework with a 

latent learning about state-of-the-art generative art techniques. We show that this method works 
effectively for both guaranteeing that the learnt posterior distributions follow established physics 

constraints and reconstructing global distributions of theoretical kinematic quantities. It is 

noteworthy that our combined approach offers a distance to the truth, distribution-free, that is 

roughly twenty times shorter than a third the usual latent diffusion models and less than the most 
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recent non-latent baseline. The fundamental limitation of the LVDDM technology is the significant 

computational complexity of the diffusion process. Moreover, it is challenging to ensure that the 

generated data precisely captures the richness and diversity of the actual environment, which may 
necessitate further optimization and refinement. 

 

       In the paper Shaoyan Pan et al.[24] the authors suggest a novel way to make radiotherapy 
planning easier: they take routine magnetic resonance imaging (MRI) and use it to generate 

synthetic computed tomography. In order to avoid the requirement for separate cross-sectional 

simulation and image registration, the objective is to produce high-quality cross-sectional images 
using MRI data. During treatment planning, this method lowers the patient's radiation exposure and 

eliminates ambiguity in the environment. The suggested approach is known as the noise diffusion 

probabilistic model (MC-DDPM) based on the MRI-to-CT converter. In addition, it improves the 

diffusion process by converting MRI to high-quality sCT utilizing a moving window transducer 
network. Two procedures make up this approach. Gaussian noise is introduced in the first step, 

known as the forward process noisy CT images when compared to actual CT scans.The second is 

the opposite procedure: noise-free CT scans are produced by isolating the CT noise conditioned by 
the matching MRI using a variable window V-net (Swin-Vnet). Furthermore, the brain dataset 

Brain sCTs generated by MC-DDPM yielded state-of-the-art quantitative results, such as a 

normalized cross-correlation (NCC) of 0.983, a multi-scale structural similarity index (MS-SSIM) 

of 0.965, and a mean absolute error (MAE) of 43,317 Hounsfield units (HU). We conclude that 
MC-DDPM enables the development of reliable, high-quality sCT images in a matter of minutes by 

efficiently capturing the intricate interaction between CT and MRI images. The planning of 

radiation will be significantly impacted by this revolutionary method. 
 

       The authors of the paper Tiange Xiang et al.[25] provide an independent denoising technique 

specially developed for diffusive denoising generative models in MRI denoising. Where the dispute 
is raised One crucial medical imaging technology is a form of magnetic resonance imaging (MRI); 

nevertheless, in order to get a good signal-to-noise ratio (SNR) for MRI, lengthy scan periods are 

frequently necessary, leading to higher expenses and discomfort for the patient. In order to 

overcome this difficulty, the authors concentrate on MRI scan noise reduction, which is especially 
constrained by SNR. The suggested technique combines diffusion models with statistics-based 

denoising theory, dubbed Diffusive Denoising Models for MRI Denoising (DDM$^2$). It runs in 

three stages, using modal generation to cut down on noise. Inference-related input noise 
measurements are shown as samples from the diffusion Markov chain mean posterior distribution. 

DDM$^2$ is supervised Subjective, in contrast to the majority of earlier MRI denoising techniques 

that depend on supervised training datasets. This is crucial since it is not feasible to gather 
supervised data for various anatomy, MRI scanners, and scanning parameters. The authors were 

able to conduct tests on in vivo MRI data sets in order to assess the performance. Superior 

denoising performance was proven by DDM$^2$, as assessed by clinically important optical 

qualitative and quantitative criteria. To sum up, DDM$^2$ efficiently lowers noise in diffusion 
MRI scans, improving picture quality and maybe improving patient care in the course of treatment 

planning. 

 
       Authors of the paper Jiahang Cao et al.[26]suggest a novel class of diffusion models based on 

SNNs. For generative tasks, specifically noise reduction using diffusion MRI images, the aim is to 

use artificial neural networks' energy efficiency and biological acceptability. Furthermore, the 

suggested approach, known as Denoising Propagation Probabilistic Models (SDDPM), features an 
architecture that is solely Spiking U-Net. Similarly, with only 4 time steps, this architecture 

delivers a large energy reduction and performs similarly to its counterpart in an artificial neural 

network (ANN). In terms of terms that are generated: Although earlier studies have mostly 
concentrated on improving SNNs for classification tasks, SDDPM investigates the generative 
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capabilities of SNNs. It surpasses previous SNN-based methods and produces state-of-the-art 

outcomes in generative challenges models that generate. The authors' threshold-oriented strategy, 

which even without training, boosts performance by 2.69%, is a nice idea. In the end, SDDPM 
opens up new research opportunities and constitutes a significant advancement in the field of SNN-

based image production. 

 

       These connected articles shed light on the application of deep learning techniques and image 
synthesis to ultrasonic imaging for medical applications. With an emphasis on employing these 

models to produce synthetic images, researchers can use these studies to push the frontiers of 

diffusion model construction and progress. In addition to talking about some of the challenges 
facing the sector in comparison to. While traditional methods like (GANs) and (VAEs) have 

considerable potential, they frequently fail to generate high-quality output and capture the intricate 

geometric elements needed for realistic 3D models. 

3.   Methodology 
      The goal of the proposed method is to synthetic medical modalities (Ultrasound images) by 

using a diffusion model as shown Figure 2. 
   

 

Fig. 2. The general strategy 

      The suggested approach comprises two processes: a forward process that represents adding 
noise using a Gaussian noise and a reverse process that represents noise removal as depicted in 

Figure 3. 

 

 

                                               Fig. 3. Schematic of the Proposed Method 
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              While diffusion models are only a few latent variable models, they have many 

implementation possibilities. The model architecture, the parameterization of the reverse process 

using the Gaussian distribution, and the variances βt-1 of the forward process need to be chosen in 

(Section 3.2). We present a new explicit relationship (that guides our decision-making) between 
diffusion models and blurring score matching, leading to a simplified weighted variational bound 

objective (In Section 3.3) for diffusion models. Finally, objective evidence and simplicity are 

discussed in Section 4 as reasons for our model design. Equation (4)'s components categorize our 

conversation: 

3.1. Forward process 

       For our purposes, let's say that an input image, x0 ∼ q(x|z), that has been sampled from a data 
distribution of real samples, q(x), that needs to be simulated, gradually gains noise thanks to a 

forward process. In this case, the data depends on a variable called z. The extra Gaussian noise at 

each time-step t, where t ∈ {1, T}, is a Markov chain with T steps and variance. Its sole 

dependencies are on the training variable and the sample from the previous phase. As a result, the 
distribution can be expressed as a latent variable. The diffusion forward operation consequently has 

the following expression:  
                   

         (1) 

 

        By defining, it is feasible to compute xt without computing every sample at earlier stages. 

This allows a sample xt to be sampled as follows: 
 

      ∼  =                                            ( 2 )       

 

Variance β may be fixed in this work, β improves over T steps from 10−4 to 0.02. 

 

3.2. Additional input z for conditioning 

               To condition the synthesis y, an encoder τγ with weights γ is employed. The U-Net's 

intermediary layers are mapped to the middleman depiction τγ(z) ∈ RM×d, which is the outcome. of 

mapping this encoder. Like R, the domain-specific encoder for language prompts may employ a 
transformer technique. Using a latent representation from a trained auto-encoder, we generate the 

encoding for higher-dimensional conditioning data, such as a picture. The auto-encoder is 

implemented in this work as a convolutional neural network with three down- and three up-
sampling layers. There are 128 dimensions in the latent representation, and it is mapped to the 

intermediate layers the U-Net. This provides us with the image encoding and text encoding for 

sample , conditioned on z.  

3.3. Reverse process  

The distribution gets closer to an isotropic Gaussian with a big enough T. Therefore, through the 
reversal of the unit Gaussian distribution noise addition process N (0, I) samples, the data 

distribution q(x) may be simulated. But in reality, neither the reverse q(xt−1|xt, z) nor its statistical 

estimation is known because obtaining any statistical estimate would require knowledge of the data 

distribution. However, we can use a parameterized function ϵθ  to learn how to 

approximate q(xt−1|xt, z). This function can be thought of as a sequence of extra-conditioned de-
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noising auto-encoders on the time-step t. Parameterizing a Gaussian and then manually removing 

the predicted Gaussian noise is easier. For sample −1, we therefore have: 

 

                                 (                                (3) 

 
           Next, implementing the reverse procedure for every time-step:  

                            ( = ( )                              (4) 

     In this instance, the complete procedure is packaged in a de-noising function ϵθ , It has 

been trained to expect an input de-noised representation, in particular x0, from . We can rewrite 

this as ϵθ ( , t, τγ(z)) to include the encoder that was used to pre-process the conditioning variable. 

The goal for this may then be reduced to: 

                                                =  [  ]                                                 

(5)    

                                                          
       We utilize a U-Net to maximize computing efficiency as our denoising procedure in this study 

and input latent images into the function for training. In diffusion models, the UNet design 

comprises an up-sampling path for precise localization and a down-sampling path for context 

capture. This structure makes the model's ability to process data at various resolutions possible, and 
it is essential for producing detailed results. A distinguishing feature of the UNet architecture is 

skip connections. They establish connections between the layers in the up-sampling path and those 

in the lower. Because the UNet is conditioned on noise levels, it can learn a reverse diffusion 
process, which is crucial for the quality of generated samples in diffusion models. This design aids 

in maintaining high-resolution details throughout the network. The model starts with a  

    

   simple random noise distribution and eventually learns to recover the data distribution via 
denoising inputs. The training can be done in several ways, including changing the input or using 

UNet's adaptive normalization layers. The UNet architecture's adaptability allows it to process 

multimodal inputs efficiently. This feature is used in diffusion models to condition the generation 
process on extra data, including class labels, text descriptions, or even other images, improving the 

model's capacity to generate focused and coherent outputs.  as shown in the figure: 

             

                                                                                                    

 

                     

 

 

 

 

 

 

       Image Encoder                                                                                               Text Encoder     

U-Net(decoder) 
U-Net(encoder) 

 

Diffusion 

 

                                     Fig. 4. A summary of the diffusion procedure 
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3.4 Modified from the trained sampling diffusion model 

 

        For taking an example of a image taken from the distribution of learned data and utilizing the 
supplied conditioning parameters. We use our reverse de-noising function to compute the sample., 

x0 =  (xt, t, τγ(z)), and sample xT ∼ N (0, I). Better results are observed in practice, nonetheless, 

unless noise is reintroduced using the noise schedule step t 1, or using Eq.1. The de-noising 

function is then used once more to create a latent sample. x0, to which the schedule is used to add 

noise until t -2, and so on, until t- t.   

4.    Experiments 

4.1. Dataset 

       The data set consists of a set of data ultrasound images. 
  https://www.kaggle.com/datasets/sabahesaraki/breast-ultrasound-images-dataset 

split into a train set (1262images) and a test set (317images) (total of 1578 images. Through the 

following link located in Kaggle. Kaggle features excellent-quality images[27]. This dataset was 
split into subgroups for testing and training., adhering to the identical data arrangement as in. An 

open pose is used to extract skeletons. The images differ in terms of background, lighting, and 

points of view. The test set identities do not overlap concerning the dataset. 

4.2. Evaluation Metrics 

       Four separate Criteria for evaluation are applied to the model. In addition, the Two methods for 
measuring accuracy are the Structure Similarity Index (the SSIM score)[28] and Trained Perceptual 

Image Patch Along Clarity (LPIPS)[29]. Comparably, LPIPS computes the perceived difference 

between the created and reference images, whereas SSIM computes the image at the pixel level. 
The degree of realism in the produced images can be evaluated using the fractional inception 

distance (FID) [30]. A comparison is made between the generated image and the ground-truth 

image distributions, and a Wasserstein-2 distance is calculated. Particulars of Implementation: We 
used T = 1000   noising steps to train our model[31].  

            We examine the potential of the suggested scaling factor to consider diffusion models when 

creating images of varying sizes. Specifically, we substitute the self-attention layer's tuning factor 

in diffusion models and evaluate their performance on a subset of the dataset [32],[33],[34], which 
includes, respectively, over 300 image pairs filtered by CLIP, without any training. We randomly 

choose text-image pairings from each dataset and produce images corresponding to texts using 

different evaluation methods. We consider trained Latent Diffusion and Stable Diffusion as 
diffusion models to evaluate the performances[35],[36],[37]. The former, set up to synthesize 

images with a resolution of 512 × 512, keeps four pixels more than the latter, which has a default 

resolution of 256 × 256. 

Table 1.  Latent Diffusion in different resolution settings. 

 

Dataset                           FID                    CLIP          SSIM       LPIPS     Various evaluation  

    

Ankan et al[38]                    6.3671                ---            0.7312         0.1678                                      

Jonathan Ho et al[39]           3.17                                                                        IS(9.46±0.11) 

Weilun Wang et al[40]         18.8                     ---            0.422                          mIoU(39.2) 

Proposed method                2.870                  0.209       0.4728         0.92   

https://www.kaggle.com/datasets/sabahesaraki/breast-ultrasound-images-dataset


S. A. Abd et al. 

 

29 

 

Table 1. Table displays the results together using the efficacy at the trained models. 

          The proposed model is compared quantitatively to various cutting-edge models using Fritz 

Inception Distance (FID), Visual image patch similarity that is taught (LPIPS) and its Measure of 

the Structure Similarity Index (SSIM).    

          It is important here to point out that the synthetic images generated by DMs are in different 

epochs: the first synthetic image was produced in only 315 epochs, the second in 348 epochs, the 

third in 392 epochs, and so on, until the final image in Figure 5, which was produced in only 

1000. squeeze out's 

 

   Fig. 5 DMs receiving training to produce artificial CT images across several epochs           

        The generative path in our suggested denoising diffusion model is dependent    on the pose 

and style. determines the likely transfer trajectories by dividing the issue into a series of diffusion 

steps that go forward and backward    

Table 2. The Ultrasound dataset's count of images and accuracy 

 
Test Accuracy Train Accuracy Test Loss Train Loss 

97.00% 97.47%, 0.0868 0.0346 
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Figure .6 shows the training and test loss curve and training and Test accuracy of the model. 

The accuracy and loss of the ultrasound images                         Fig. 6. 

        Here, it observe that the test accuracy is 97.00%, indicating that for around 97% of the test 
samples, the model accurately predicts the category labels. The precision of the training is also very 

crucial. It gauges how well the training set of data matches your model. With a training accuracy of 

97.47%, the model is said to function well with the training set of data. Additionally, the test loss 
also known as the validation loss determines the degree to which the model's predictions agree with 

the ground truth labels found in the data. Better performance is indicated by a lower test loss. The 

test loss has a value of 0.0868. Lastly, loss of training: A model's fit to the training set of data is 

measured by train loss, also known as training loss. Low train loss is preferred, just like test loss. 
             In conclusion, it's critical to remember the following points: 

• To start with, your model performs well on training and testing sets of data. 

• Second, the model performs well as evidenced by the comparatively low loss values. 

5.     Discussion 

       The synthesis of ultrasonic images has been carried out with a 97.47% accuracy rate using 

Latent diffusion models. Ultrasound imaging poses particular unique challenges since it requires 
operator settings and functions in real-time. Despite these challenges, LDMs show a great deal of 

promise for obtaining a sufficient degree of precision and generating realistic ultrasound images. 

Depending on how well they work, LDMs may be useful in creating synthetic ultrasound images 

for use in training by medical professionals and AI models. Its lower accuracy when compared to 
other techniques suggests that more improvement and optimization are needed to guarantee that 

LDMs for ultrasonic imaging can catch the tiny oscillations observed in clinical settings. Because 

they can produce unseen images, LDMs are therefore preferable over traditional approaches. As a 
result, our model has performed better than conventional techniques like GANs and VAEs. GAN 
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models are well known for their potentially unstable training and decreased generational variability 

since they employ adversarial training. is reliant on a proxy-based loss. 

        modalities like MRI and CT for a number of reasons related to the constraints and nature    of 
ultrasound imaging. 

 
1.  Image diversity and quality: Ultrasound images might not meet the same  
2. Tissue properties and comparison: Less contrast: Compared to MRI and CT scans, ultrasound 

images might occasionally display less color, which makes it more challenging to identify 

abnormalities and distinguish between various tissue types.  
3. Anatomical structures' complexity: One typical application of ultrasound technology is 

accurate imaging of dynamic and complicated anatomical systems, such as the heart and 

moving organs.  

4.  Other disorders: Ensuring that the model appropriately gathers and categorizes all possible 
abnormalities since a variety of medical diseases can be detected with ultrasound imaging. 

5. Model optimization: More intricate model designs and approaches will be required to handle 

the unique problems that ultrasonic imaging presents. Perhaps we shouldn't use this anymore 
6.   The general low resolution of ultrasonic image synthesis is responsible for several ultrasound 

imaging challenges, including poor contrast and picture quality, operator reliance, and 

complexity of the body structures being viewed. Improved model optimization, data 

collecting, and contemporary training approaches should be used to overcome these issues. 

    6. Conclusion    

        This paper focuses on generating medical images, as it is important to synthesize 

these images using diffusion models that match reality. This paper specifically examines 

the synthesis of medical images, and ultrasound imaging, as they appear with the value 

and results (FID: 2.870, CLIP: 0.209, SSIM: 0.9923, and LPIPS: 0.92). The accuracy 

was: 97.47%, which is considered excellent, and the extent of the devices’ ability LDMs 

to enhance imaging medical, which contributes to improving medical imaging. The 

results of this paper confirm that obstetric diffusion models continue to advance, provide 

solutions to challenges, and open new horizons for developing their ability to adapt and 

apply them in several therapeutic contexts, such as medical learning and personal 

support. Diffusion models remain in advanced centers where there is high accuracy and 

ideal quality in Generating high-resolution indicative image. 
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 ن ر الكامشاتموذج الانام تقنية ندقة باستخلي الده عاصور موجتركيب  

 الجبار  بدزيد امين ع ،*خوله حسين علي ،سرى احمد عبد 

    ،العراق،  التربية للعلوم الصرفة، جامعة البصرة  حاسوب، كليةلقسم علوم ا 

 معلومات البحث  لخص مال 

تركي الموج نقدم نموذج الانتشار الكامن المستخدم في  الطبية.  فوق الصو  تاب صور  تية 

إلى   النشير  هأن  الدقة  الصوتمشكلي  الموجات فوق  تركيب صور  من  الانتهاء  وتم  ية  ة، 

فوق الصوتية تتطلب دقة أكبر. وله بعض العيوب الخاصة   اتج% لأن المو97.47ة  بدق

يعمل ويت  لأنه  الفعلي  الوقت  التحديا في  هذه  إلى  وبالنظر  المشغل.  إعدادات  فإن  طلب  ت، 

النج نموذ لديه  تقديا  في  الأمل  من  صوركثير  ونابضة   فوق  وجاتبالم  م  دقيقة  الصوتية 

دقيقة لهذا التحسين، فإن تطبيق  ال  لصعب حساب الإجابةن ا ه مبالحياة. على الرغم من أن

واحد مرة  العكسي  الانتشار  إ  ةطريقة  يؤدي  أن  يمكن  أجل فقط  من  تقريبية.  نتيجة  لى 

الانتش نموذج  بالقيمة  تدريب  )اوار   :FID: 2.870  ،CLIP: 0.209  ،SSIMلنتائج 

ة لما يقرب  اعيصطن( التي وعدنا بها، قمنا بإنشاء صور اLPIPS: 0.92، و0.9923

ذكاء لرة بالموجات فوق الصوتية. تم الحصول عليها. إن توسيع استخدام اصو  300من  

جديدة،   ن هذه مشكلة لتصوير الطبي هو الهدف من هذا المسعى. وبما أالاصطناعي في ا

حثين الذين يبحثون في التطبيقات المحتملة  للبا هام  در إلس ومصون الدراسة بمثابة أسا ستك

الصونتالا  لنماذج إنتاج  في  عنوان  ا  رشار  يوفر  لطبية. 

URLhttps://www.kaggle.com/datasets/suraahmed56/computer-

vision-medical-images .إمكانية الوصول إلى الصور الاصطناعية 

 2024يسان  ن 14  ستلام  الا

 2024  بأ  15 المراجعة

 2024 ب أ  29    القبول   

 2024ول  لاكانون ا 31    النشر  

 حية المفتاالكلمات  

ب  تركي ،الانتشارج نماذ
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