
 Journal of Basrah Researches (Sciences) 50(1), 340 (2024)

 DOI: https://doi.org/10.56714/bjrs.50.1.27

*Corresponding author email: zainabh.alfaham@student.uokufa.edu.iq

 ©2022 College of Education for Pure Science, University of

Basrah. This is an Open Access Article Under the CC by

License the CC BY 4.0 license.

 ISSN: 1817-2695 (Print); 2411-524X (Online)

Online at: https://jou.jobrs.edu.iq

Citation: Zainab H. Jody, J. Basrah Res.

(Sci.) 50(1), 340 (2024).

DOI:https://doi.org/10.56714/bjrs.50.1.27

A Survey on Bio-Inspired Algorithm for SQL

Injection Attacks

Zainab H. Jody

Department of Computer Science, College of Computer Science and Mathematics, University of Kufa,

Najaf, Iraq

A R T I C L E I N F O A B S T R A C T

Received 4 May 2024
Accepted 18 June 2024

Published 30 June 2024

SQL injection attacks cause significant threats to

the security of online applications. It leverages

vulnerabilities in database systems and can result

in unauthorized access to and compromising

sensitive data. This study investigates the use of

bio-inspired algorithms to tackle such attacks,

assessing their applications and potential for

enhancing cybersecurity measures against SQL

injection attacks. In this review, we describe the

basic definition, causes, types, and prevention

mechanisms of SQL injection attacks. In addition,

we examine the use of various bio-inspired

algorithms to solve the problem of SQL injection

attacks. This study concludes the importance of

continuously improving detection methods,

particularly those adopting bio-inspired algorithms

since they achieved promising results.

K e y w o r d s :

1-Bio-inspired Algorithm, 2-an

overview of the background of SQL

injection, 3-SQL Injection Detection

and prevention Techniques.

1. Introduction

 The Internet is currently becoming a ubiquitous information infrastructure. The proliferation and

advancement of Internet infrastructure have recently resulted in a surge in the data saved in databases

[1]. Given the increasing user base and heavy reliance on digital data, it is crucial to implement spatial

protection measures for many kinds of information, such as business data, financial transactions,

health records, personal data, and online services [2]. Any web browser on any operating system can

access all web applications on the Internet, a global non-profit initiative, focuses on enhancing

software security. This community releases the "OWASP Top 10," which is a known publication

focused on raising awareness between developers and enhancing web application protection. The

statement signifies a widespread agreement over the most crucial security vulnerabilities of web

applications [3]. In 2021, the OWASP Top 10 ranked injections as the third most critical online

application security vulnerability, (see Table 1) [4], also released the CWE Top 25 Most Menacing

Software Weaknesses This category ranks SQLIAs third

Web applications with poor construction are often vulnerable to malicious software attacks,

particularly SQL injection attacks. Experts have recognized this vulnerability for over two decades

and it remains a source of concern[5]. SQL has been the dominant accepted practice for many years

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56714/bjrs.50.1.27
https://creativecommons.org/licenses/by/4.0/
https://jou.jobrs.edu.iq/
https://doi.org/10.56714/bjrs.50.1.
https://orcid.org/0000-0000-0000-0000

A Survey on Bio... J. Basrah Res. (Sci.) 50(1), 340 (2024)

341

as a standard for handling relational database management systems (DBMS). Since most cyber-

physical systems contain safety-critical applications, any failure due to random mistakes or online

attacks could significantly hinder their progress [6]. Hence, it is imperative to protect cyber-physical

systems from experiencing such attacks.

 SQL injection attacks against fact-driven web applications and systems have been a significant

issue since the widespread integration of Internet web applications and SQL databases [7][8]. An

SQLI attack occurs when an attacker injects malicious SQL code into a web application's database to

exploit the vulnerability. An attacker exploits vulnerability in the web application's SQL

implementation by injecting a malicious SQL statement into an input field. Put simply, the attacker

will inject code into a specific area to extract or modify data or to obtain unauthorized access to the

backend. According to sources [9]and [10], SQLI attack is a prevalent method that enables injurious

SQL code to exploit database backends and gain access to concealed information. It is considered

one of the most hazardous injection attacks as it poses a threat to essential security pillars such as

confidentiality, authentication, authorization, and integrity [11].The material in question may

encompass confidential corporate data, personal customer information, or lists of users. An

experienced SQLI attacker can completely erase databases, exploit sensitive data without permission,

and inadvertently gain administrative privileges in a DB of web attacks [12][13]. According to [14],

the most common vulnerability in web applications is injection. Injection attacks exploit various

vulnerabilities. The delivery of untrusted user input, which a web application then processes, is one

of the issues [15]. SQLI attacks involve inserting malicious SQL commands into input forms or

queries to gain unauthorized access to a database or change its data. This can include actions such as

extracting the database contents, modifying or deleting the database content, and so on [16].Currently,

most online applications rely on a back-end database to store user-gathered data and/or access user-

chosen information [17].

 To communicate with these users, we frequently use forms and data. Various hackers attempt to

exploit this functionality by inserting malicious code into user inputs, which they then use to generate

SQL queries. Insufficient validation of user inputs can lead to the successful execution of an SQL

injection attack, which can have severe repercussions. As a result, it leads to the removal of the

database or the extraction of sensitive and secret data from web application clients [18]. Multiple

research studies have focused on the SQLI attack because of its significant impact on security. Some

of these works solely focus on the post-detection of SQL injection (SQLI), while others aim to

proactively avoid it. Traditional security methods have failed to detect various web attacks including

SQLI adequately. Hence, there has been an increase in the adoption of new techniques to complement

defence mechanisms such as Machine Learning (ML) algorithms. Bio-inspired algorithms, a subset

of ML algorithms, have successfully evolved intelligent defence solutions for various domains, for

instance, networks [19] cross-site scripting attacks [20] IoTs [21] and mobile [22].

 This study presents a comprehensive survey of SQL injection attacks. We provide an overview

of attacks' main attack sources, categories, and objectives. Furthermore, the primary suggested

remedies that address this type of attack the topics were deliberated and contrasted.

 The contributions of this study are:

1. Given the increasing incidence of SQLIA and its ability to undermine the security of web

applications, it is necessary to review ways to improve detection techniques.

2. Machine learning techniques show potential to improve SQLI detection, with multiple studies

reporting excellent accuracy, recall, and F1 scores in identifying malicious payloads.

3. Extensive discussion of bio-inspired Algorithms, such as Genetic Algorithm (GA), and Swarm

Based Algorithms such as (ABC, ACO, CSA, GWO, and BT) new and effective ways to improve

mechanisms aimed at preventing SQLI attacks.

4. A look at how combining bio-inspired approaches with machine learning have the potential to

create advanced, adaptive defended systems against SQLI attacks.

5. Future research should prioritize the development of adaptive algorithms that can evolve in

response to SQLI attack patterns. Furthermore, it is crucial to encourage collaboration between

academics and industry to facilitate knowledge exchange and pooling of resources.

 This survey paper will be organized as follows. Section 2: provides an overview of the

Zainab H. Jody

342

background of SQL injection. Section 3 provides SQL Injection Prevention Techniques. Section 4

explains Nature-Based Technology. Section 5. introduces a bio-inspired SQL injection application

Section. 6. The Paper's Discussion Section 7. provides the paper's conclusion.

Table 1. The OWASP Top 10 Web Application Security Dangers table [4]
OWAPA TOP 10-2013 OWAPA TOP 10-2017 OWAPA TOP 10-2021

Injection Injection Broken access control

Broken Authentication and Session

Management

Broken authentication Cryptographic Failures

Cross-Site Scripting (XSS) Sensitive data exposure Injection

Insecure Direct Object References XML external entities

(XXE)(NEW)

Insecure Design (NEW)

Security Misconfiguration Broken access control Security Misconfiguration

Sensitive Data Exposure Security misconfigurations Vulnerable and Outdated

Components

Missing Function Level Access

Control

Cross-site scripting (XSS) Identification and Authentication

Failures

Cross-Site Request Forgery (CSRF) Insecure deserialization (NEW) Software and Data Integrity

Failures (NEW)

Using Components with Known

Vulnerabilities

Using components with known

vulnerabilities

Security Logging and

Monitoring Failures

Unvalidated Redirects and

Forwards

Insufficient logging and

monitoring

Server-Side Request Forgery

(SSRF)(NEW)

2. SQLI Attack Overview

2.1 SQLIA Definition

Web-based applications often follow a three-tier design, consisting of a presentation tier for the

user interface, a business tier for logical processes, and a data tier for handling data. It stores all the

organized information. A SQLIA, or SQL Injection Attack, exploits vulnerabilities in all three levels

of a system to carry out a successful attack[23]. Malevolent SQL commands, transmitted from the

presentation layer to the business tier, modify the current SQL queries, thereby exploiting the

database tier to gain access to assets. The absence of validation at both the display and business levels

of online applications results in a successful SQL injection attack (SQLIA)[24].

Fig.1. SQL injection attack work.

 2.2 SQLIA Sources

A Survey on Bio... J. Basrah Res. (Sci.) 50(1), 340 (2024)

343

Any application parameter that can be used in a database query could potentially include SQL

injection vulnerabilities. The writers in [25][26], were provided Four sources which is how the SQL

Injection Attack (SQLIA) gets started. These sources are user input, cookies, server variables, and

stored injection.

2.2.1 Injection through user input

Web applications typically use forms to gather user data, such as during registration or login

processes, or to allow users to define certain preferences or settings. Thus, information should to be

retrieved, such as search results or an adapted view. These forms that have a "text field" might be

vulnerable to exploitation by attackers who can inject malicious code. This can lead to unauthorized

access to sensitive data (such as retrieving secret information) or performing unauthorized operations

(such as manipulating a database). The typical fields include login name, password, address, phone

number, credit card number, and search[27][25].

2.2.2 Injection through cookies

 Modern web apps use cookies to store user preferences. The client computer stores cookies,

which are files that include the state the online programs produce data. A web application that uses

cookie contents to construct SQL queries may become vulnerable to an attacker's malicious code

embedded in the cookies stored on his computer [24][25]

2.2.3 Injection through Server Variables

Server variables consist of a collection of parameters that store network headers, HTTP

information, and environmental factors. In general, Web applications utilize server variables to

conduct auditing, track usage data, and discover browsing trends. Malicious individuals can exploit

this vulnerability by directly inserting an SQL injection attack into the server variables if they save

these variables in a database without proper validation [25].

2.2.4 Stored injection

 In this form of injection, sometimes referred to as second-order injection, malicious actors can

insert detrimental inputs into a database, thereby initiating a response from the database. The

appropriate command should follow each input to execute the SQL injection attack [28].

2.3 SQLI Attack Objectives

Hackers can utilize SQL injection (SQLI) attacks to achieve various goals. The primary objectives of

a SQL injection (SQLI) attack are:

2.3.1 Identifying Injectable Parameters

 Hackers start by identifying the vulnerabilities that they can manipulate to introduce malicious

code. The sources listed in Subsection II-A may be Encompass these attributes. These parameters can

refer to specific data, such as a "card number" stored in a cookie or a "username" entered in a form.

By injecting SQL code, a malicious individual can alter the logic of the statement, causing it to run

in a manner different from its intended functionality. One can exploit SQL injection vulnerability by

injecting a single quote mark, commonly used in SQL to indicate the start or end of a string value.

As a result, an application error would arise, exposing a potential vulnerability [29]

2.3.2. Performing database fingerprinting

 The attacker must understand the database fingerprint to create a query syntax that the target

database engine approves. We refer to the unique characteristics that distinguish a specific kind and

version of a database system as the database fingerprint. Proprietary differences cause different

database systems to use different SQL language syntax. Oracle SQL Server uses PL/SQL, while

Microsoft SQL Server utilizes T-SQL. Consequently, the attacker needs to determine the specific

kind and version of the web application's database to generate SQL input that can exploit its

vulnerabilities. In addition, attackers can exploit the inherent vulnerability of the database's default

settings [27]

Zainab H. Jody

344

2.3.3. Determining Database Schema

To proceed, the attacker must possess knowledge of the database schema, which includes

information such as table names, column numbers and names, and column data types to effectively

retrieve data from a database. Hackers construct a meticulous subsequent attack by exploiting the

database structure to extract or manipulate data from the database [30].

2.3.4. Extracting data

These attacks employ techniques to extract data from the database. This vulnerability poses a

significant risk to a web application as it allows unauthorized access to sensitive information. It may

include sensitive and highly classified information. The most common type of SQLIA comprises

attacks aimed at achieving this objective [28]

2.3.5. Database alteration

These attacks have the objective of altering or updating data that is stored in a database. For

instance, a hacker can greatly decrease the cost of an online transaction by modifying the pricing

information that is often stored in a database. An internet chat database may potentially be targeted

by adding a malicious link as a potential attack strategy [31]

2.3.6. Performing denial of service

This attack can manifest in various forms, including disabling a web application's database,

encrypting or deleting database tables, and so on, to deny access to other users [29]

2.3.7. Bypassing authentication

This exploit aims to bypass the online application's authentication protocols. The exploit exploits

the privileges and rights of another user, typically one with a superior status. If the intruding party is

successful in carrying out such an attack, it may revoke one's rights and privileges [29]

2.3.8. Executing remote commands

Executable code known as remote commands is present on the compromised database server.

These instructions could either be functions or stored routines. This information can be easily

accessed by database users. In this type of attack, the attackers attempt to execute arbitrary

instructions on the database. This can lead to the execution of shutdown commands or cause

disruption and denial of service to the database [32].

2.3.9. Performing privilege escalation

These exploits leverage implementation flaws or logical weaknesses in the database to try to

elevate the attacker's privileges. These attacks focus on exploiting the privileges of the database user

instead of trying to bypass authentication. Once the attacker gains root privilege, this technique can

have severe consequences [30].

2.4. SQLI Attack Categories

There are various types and styles of SQLI attacks [5][33]We go over and categorize the primary

SQLI attack types in this section, which are:

2.4.1 Tautologies
An attacker makes use of the SQL statement's condition format following (WHERE) clustering.

Verifying the username and password is the prerequisite for any login inquiry. The attacker

meanwhile introduces an input for the always-true condition. Such an attack resulted in access to a

web application. [31].

2.4.2. Union query

In SQL (Structured Query Language), the Union statement is frequently used to combine two or

more SQL queries. Structured Query Language (SQL) A UNION-based injection attack is a specific

form of attack that exploits the capabilities of UNION to append an additional query to extract data

from a system. For example, during the login process, an attacker may execute a data extraction

A Survey on Bio... J. Basrah Res. (Sci.) 50(1), 340 (2024)

345

statement (SELECT * FROM Customers) to retrieve all customer details. The list contains the

numbers [34][34]. An example of a Union query is SELECT * FROM users WHERE username =

’admin’ and password= ’moh@20’ UNION ALL SELECT * FROM users;[36].

2.4.3. Error-Based
The web page will display the database error message. The SQL query statement is experiencing

an issue, and the "union query" is unable to function in this vulnerability. In contrast to basic SQL

injection, the back-end code is currently only retrieving the initial result and cannot extract all of it.

As a result, the "union query" is not functioning effectively. The error-based exploitation technique

involves the theft of data by exploiting error messages displayed on a webpage [36].

2.4.4. Blind SQLi
 Blind SQL injection is a technique that involves utilizing SQL statements to ask a series of

questions that get either true or false responses. This method can be employed to gain unauthorized
access to sensitive information on a website[37].

2.4.4.1. Boolean-Based

This type of SQL injection uses Boolean values (true or false). The malicious SQL query causes

the web application to generate an alternative result. The result of the query determines whether it is

true or false. To change the syntax of the original query's WHERE clause, for example, "aaa O R 2 =

2" has been entered as the password in the SQL query "SELECT ∗ FROM people WHERE password

= aaa OR 2 = 2." The resulting SQL query uses a logical operator OR to separate two distinct

conditions. The second condition, "2 = 2," has to be true even when the first, "password = aaa," might

not. Thus, if at least one of the operands is true, the logical operator OR returns true, compelling the

web application to produce a different result [38].

2.4.4.2. Time-Based

 A time-based SQL injection attack is a sophisticated method of SQL injection that falls under

inferential or blind attacks. Unlike other attack types, this technique does not involve data transfer.

Instead, attackers manipulate complex SQL statements to alter the execution time of queries on the

target computer. If the attack is successful, the response will be delayed, giving the attacker ample

time to methodically identify and analyze the database and devise a plan of attack [37].

2.4.5. Piggy-backed query

A piggy-backed query attack involves an attacker intentionally injecting additional queries to

retrieve, modify, or add data. Adversaries introduce supplementary elements. Additional queries to

the original query cause the DBMS to receive multiple SQL requests. The provided query is a prime

example of a piggy-backed query SQL injection attack. The following is an example of a drop table

(SELECT * FROM books WHERE id=5; drop table users;) [17].

2.4.6. Stored procedures

 The database engine may support a stored developer-implemented procedure, as well as default-

coded procedures and triggers. The attacker injects a remote execution call for such procedures, as

an example where the attacker tries to shut down the database [39]. (SELECT * FROM users WHERE

id=5; exec (SHUTDOWN);) .

2.4.7. Alternate encoding

The attacker encoded the injection to trick the web server. Moreover, to fraud any filtering

method within the web server, an example is shown as SELECT * FROM users WHERE id=5; exec

(char(0x736875746 46f776e)); [31].

2.4.8. Illegal/logically incorrect queries

Zainab H. Jody

346

 This type of attacker exploits an incorrectly executed database query [40]. Database error

messages often contain vital information that allows an attacker to gain knowledge about the exact

details of the application's database. The attack's objective encompasses finding injectable parameters,

performing database fingerprinting, and extracting data are the tasks involved. This attack enables an

assailant to get vital information about the structure and operation of the backend database of a web

service [41, 42]. The attack is believed to be a rehearsal for future attacks to gain intelligence. This

attack exploits the vulnerability that arises from the detailed nature of default error pages on

application servers [43]. For instance: SELECT * FROM users WHERE username = ’test” and

password test’; [32].

Table 2: SQLIA Exporter, Objectives, and Category Categorization [40][31][32]

3. SQL Injection Prevention Techniques

3.1 Stored Procedures

 Stored Procedures provide an extra level of protection for the database, in addition to using

Prepared Statements. It enables the program to accept input data for processing instead of SQL code

for execution, avoiding its need [41]. The critical difference between a prepared statement and a

stored procedure is that the SQL code for a stored procedure is created and saved within the database

server and subsequently invoked via the web application [42].

Suppose a user's access to the database is only authorized through stored procedure techniques. In

that case, there is no need to explicitly grant the user access to any database table to get data properly.

In this manner, the database remains secure [38].

3.2 Input Validation
 Validating the input data as the primary line of defense is crucial to mitigate SQL injection

attacks. The user's input must undergo validation against predetermined criteria to ensure its

compatibility with the software's processing capabilities [43]. The primary objective of input

validation is to exclude malicious code from being transmitted to the database as a component of an

SQL query. Limiting data types, the range of data, and checking the character set validation will again

Category Parameter Categorization

Attacking Sources User input

Cookies

Server variables

Second order injection

Attacking Objectives Database fingerprinting

Analysing schema

Extracting data

Amending data

Executing dos

Equivocating detection

Bypassing authentication

Remote control

Privilege intensification

Attacking Categories

Tautology

Illegal/logically incorrect queries

Union query

Piggyback query

Stored procedure

Blind query

Alternate encoding

A Survey on Bio... J. Basrah Res. (Sci.) 50(1), 340 (2024)

347

be in the diverse category. Data type validation is all about the verification of the data given by the

user inclusive of amount, characters, and symbols to number and string type [44].The range will be

checked to make sure the input to the user is within the set range. Character set verification because

of the requirement that only an acceptable character set was used under the supervision of the software

by having a user type nothing but such a character set. Validation of the input can reveal the presence

of certain specified characters or symbols that may be pointed out as SQL injection attacks. Detecting

an attempt to introduce malicious code into a SQL query can be accomplished by examining user-

provided data for the existence of a single quote character ('). Despite its significance, input validation

is frequently disregarded during web application development, thus rendering them susceptible to

SQL injection attacks [42]. Client-side validation can be achieved using JavaScript or another client-

side scripting language. In contrast, server-side validation can be performed. One can use server-side

scripting languages like PHP or ASP.NET to create dynamic web pages.

3.3 Whitelisting

Whitelisting is the system administrators use to prevent SQL injection attacks by way of

nullifying or eliminating possibly harmful keywords or transformations in SQL queries. Another tool

that differs but on the contrary is block listing. This mechanism aims at tracking all the keywords that

are disallowed to be inserted in a SQL query containing UNION or Boolean-like statements. Being

equipped with these keywords allows the system either to remove them automatically or to raise an

error right away. This move is done to forestall possible attacks [46].

3.4 Parameterized Query

 A parameterized query is a commonly used approach to mitigate SQL injection. It involves

placing an additional layer between the user and the database. This layer constructs the query in a

predetermined structure, with only variables serving as placeholders that will be replaced with user

input. The intermediary layer verifies the query's validity before transmitting it to the database. If any

issues arise with the query, they will be promptly identified. The question mark symbol ("?") in the

query below is utilized as a placeholder in a parameterized query [31].

Retrieve all records from the Customers table. Specify the condition where the username and

password match the given values.

3.5 Escaping all input supplied by the user

This approach specifically enables DBMS to distinguish between user input and SQL commands.

To do so, the developers must be able to configure In the PHP environment, the configuration files

provide settings for magic_ quotes_ gpc and magic_ quotes_ runtime [47].

3.6 Use the principle of least privilege

 In this approach, users should only have access to the specific table they need, not full database

privileges [45].

3.7 Web Application Firewall (WAF) Instant Protection

 The system possesses the capacity to detect and block harmful network traffic before it reaches

the web application. Customizing the system allows for the identification and prevention of known

SQL injection attacks, thereby enhancing security measures in opposition to such attacks [45].

 Various conventional methods or instruments are available for detecting or minimizing SQL

injection attacks. Automated scanners can be used to detect SQL injection vulnerabilities. Automated

scanners utilize several techniques, such as static analysis, dynamic analysis, Boolean-based testing,

and error-based testing, to identify SQL injection vulnerabilities. However, those scanners are not

capable of detecting all sorts of SQL injection vulnerabilities. Some organizations fail to detect these

attacks due to various challenges they face, including outdated code, limited resources for testing and

implementing changes, a lack of awareness about application security, and infrequent updates to their

web applications. These factors contribute to vulnerabilities. To address these issues, we must employ

statistical and artificial intelligence techniques, such as machine learning and deep learning. This

study examines different machine learning and deep learning approaches and their applications in

detecting and mitigating SQL injection threats. The next part presents the key findings of the literature

Zainab H. Jody

348

review, focusing on current and significant effect mechanisms. Next, we will discuss the performance

of the top three approaches, their outcomes, and the debates surrounding them.

3.8 Machine Learning Algorithms
Using machine learning to find SQL injection attacks is a useful and effective way to deal with

this growing security risk. These programs can get around the problems with traditional rule-based

methods. The algorithms work by learning to recognize the unique traits and patterns of legal requests.

They then use this knowledge to find any oddities or deviations that could be signs of an attempt at

SQL injection [46]. Instead of sticking to set rules, these systems use machine learning to adapt to

new attack tactics. Anomaly detection models, for example, can learn the patterns of common

questions and then sound an alarm when they come across questions that don't follow the learned

patterns. Similarly, we can train classification models on label datasets of attacks and benign requests

to identify the features of SQL injection efforts. Models like recurrent neural networks in natural

language processing can detect semantic and syntactic anomalies in SQL queries, treating them as

structured language. Furthermore, we use ensemble techniques that mix several machine learning

models to enhance general detection accuracy and robustness against evasion efforts. These methods,

driven by machine learning, have the main benefit of being able to adapt to the strategies used by

SQL injection attackers. Traditional static, rule-based defences are less flexible and effective than the

models that can learn to identify new attack patterns through constant training on fresh data. But

putting into practice efficient ML-based SQL injection detection also has its share of difficulties, such

as getting representative training data, reducing model bias, and guaranteeing real-time performance.

These issues are the main focus of current research to fully utilize machine learning for robust,

flexible SQL injection defences [9].

Fig.2. The fundamental method for employing ML to identify SQL injection attacks.

4. Nature -Based Technology
Nature offers a vast and rich variety of complex and challenging events, which serve as a valuable

source of innovation for addressing complications in computer science [48]. Nature-inspired

algorithms are metaheuristics designed to efficiently solve optimization problems that mimic natural

processes, leading to a new era in computation [49]. Bio-inspired algorithms will initiate a novel

epoch in the field of computer science. Academic collaboration across several disciplines, including

computer science, ecology, AI, environmental science, and biology, is necessary to gain a broader

understanding and analysis of each step or interaction at a micro-level. This will lead to significantly

more impactful and remarkable results [50]. Environmental-based technologies are highly efficient

optimization algorithms that can create a substantial impact [51]. Conventional problem-solving

procedures encompass precise techniques such as logical reasoning, mathematical programming, and

A Survey on Bio... J. Basrah Res. (Sci.) 50(1), 340 (2024)

349

heuristics. When confronted with challenging and intricate optimization issues, the heuristic strategy

proves superior, especially when conventional methods are unsuccessful. Several biological

processes can be conceptualized as constrained optimization strategies. BIAs is heuristic algorithms

that emulate nature's methodology. Due to their tendency to make numerous arbitrary choices, they

can be classified as a subset of randomized algorithms [49]. The process design is contingent upon

the nature of the problem, the evaluation of the fitness function, and the generation of solutions.

Recently, there has been a surge in articles discussing the effectiveness of bio-inspired tactics in many

computer science domains. The literature also shows a growing interest in using bio-inspired

approaches to solve diverse challenges. The two predominant and prosperous BIA disciplines are EA

and SBA, both shaped by the principles of natural evolution and the collective behavior of animals.

This will be further improved to enable the categorization of algorithms based on their natural

inspiration, offering a more comprehensive understanding of the subject [52]. The objective is to

evaluate Business Impact Analyses (BIAs), along with taxonomy information and the many

application domains. The bio-inspired algorithms can be categorized into three primary groups [53],

(1) Evolutionary algorithms, (2) Swarm Based, and (3) Human Based.

Fig.3. Bio-Inspired Optimization Algorithms[54].

5. A SQL injection application with a bio-inspired approach

5.1 Genetic Algorithm (GA)

The method of optimization is rooted in genetics and natural selection. This technique was

initially introduced by John Holland in the 1975s and is currently recognized as a biologically inspired

method for search and optimization in a recent study[55].

 The author [56], discussed the development and utilization of a genetic algorithm-driven system

model aimed at optimizing SQL injection test data. The primary objective is to enhance the precision

and effectiveness of identifying and curtailing SQL injection attacks. In particular, we create an

elaborate system workflow through various integral steps such as testing & assessment, genetic

algorithm optimization, filtering, and enriching the test data set— allowing us to fine-tune the test

data on an automated basis to boost its resistance towards SQL injection attacks. The findings indicate

that a system model developed using evolutionary algorithms (based on the testing) can significantly

Zainab H. Jody

350

augment both the accuracy as well as speed in detecting SQL injections— making it more effective

in stopping these attacks with optimal resource utilization.
 The utilization of four distinct machine learning techniques, namely gradient boost (GB),

multilayer perceptron (MLP), logistic regression (LR), and K nearest neighbour (KNN), was

implemented by the author in [57], To enhance the model's performance and identify the most

effective configuration, a tree-based pipeline optimization tool (TPOT) and the genetic algorithm

(GA) were employed. The dataset provided by the Canadian Institute 2023, encompassing various

attack types, served as the basis for testing the model. Notably, the accuracy values achieved by GB

for accuracy, recall, and F1-score were 95%, 94%, and 95% respectively.

5.2 Artificial Bee Colony Algorithm (ABCA)

 In 2005, “Karaboga” introduced the (ABC) Technique for the first time[58]. It is designed to

optimize numerical problems by using a population-based approach. The algorithm is a variant of

the behavior of honey bee swarms in the foraging process. This simple algorithm has been praised

for its robustness and effectiveness in solving various optimization problems.

The author [59], followed the complete ABC method to do a thorough code assessment of the

possible vulnerabilities. The lead dataset for the ABC algorithm contributes to the better performance

and quality of the result. To enhance the results, the researcher highlighted the benefits of adding

more data. They also suggested looking into dynamic genome-specific testing that might yield

captivating alternatives. In general, the researcher proposed an approach to determine SQL injection

danger in web applications with the aid of the ABC method. They spotted the necessity for multi-

languages. Such a piece of the system which is based on PHP analysis was developed by them. The

researcher highlighted that by widening the database and assessing the dynamism of the testing, the

answer may be advanced.

5.3 Cuckoo Search Algorithm (CSA)

The (CSA) is derived from the cuckoo's breeding behaviour, which involves laying eggs in the

nests of other birds. If the eggs are not found and removed, they will hatch, and the cuckoos will grow

into adulthood. The algorithm, which Renew Yang and Deb first developed in 2009[60], is a

reflection of this strategy. From an initial population of cuckoos, it continuously adapts and "lays

eggs" in many possible "habitats" in an attempt to find the optimum "nest," which is comparable to

the best solution to an optimization issue.

 The author [61], employed the Cuckoo Search Algorithm (CSA) to tackle input-type validation

flaws in HTTP requests. This approach protects online application systems from security breaches

such as SQL injections and cross-site scripting (XSS) attacks. The researcher obtained the following

outcomes:

• An accuracy of 0.937

• Precision of 0.883

• A misclassification rate of 0.063

• A detection omission rate of 0.034

 The study proposed a novel approach, the Cuckoo Search-Based Exploratory Scale (CSES), for

identifying and mitigating HTTP requests susceptible to attacks. An evaluation was conducted on the

CSES model, which demonstrated high accuracy in identifying sensitive requests while minimizing

false alarms.

5.4 Bat Algorithm (BT)

The method, presented by Yang in 2010[62], is a modern swarm intelligence algorithm that draws

inspiration from the echolocation system of microbats. The Bat Algorithm (BT) algorithm has been

successfully implemented and fine-tuned for eight widely recognized optimization problems. A

comparative analysis has been performed between the suggested algorithm and other pre-existing

algorithms [63].

A Survey on Bio... J. Basrah Res. (Sci.) 50(1), 340 (2024)

351

The author[64]. It has been shown in this study that great accuracy was attained through

optimization using the BAT method. The identification of SQL injection attacks, a serious security

risk to numerous data-intensive industries, is the main objective of this study. It assesses how well a

probabilistic neural network (PNN) that has been BAT algorithm-optimized performs in detecting

these kinds of attacks. The optimized PNN obtained 99.19% accuracy, 0.995% precision, 0.981%

recall, and an F-measure of 0.928%, according to the results. This performance is faster than previous

research and has a lower false-positive rate. The main issues that have been found are the algorithm's

intricacy and its susceptibility to irrelevant or noisy data elements.

5.5 Ant Colony Optimization Algorithm (ACO)

 Marco Dorigo developed[65], the ant Colony Optimization (ACO) metaheuristic in 1992 was

based on biological and behavioural. Pheromone laying and using pheromone inspiration is to choose

the quickest path creation of the initial ACO algorithm. Numerous academics have worked on this

topic and published their findings since the introduction of the first algorithm of this kind. Even

though the early results were not very encouraging, more recent advancements have elevated this

metaheuristic

to a prominent position in swarm intelligence.

 In [66], the study presents a brand-new, two-phase technique that uses Artificial Bee Colony

(ABC), Ant Colony Optimization (ACO), and Genetic Algorithm (GA) to identify SQL injection

vulnerabilities. The method Optimizer makes the vulnerability search process more efficient by using

the previously described methods after examining the code's SQL queries. The framework as it exists

now is designed for PHP applications, primarily targeting SQL injection; however, it may be

expanded to cover other programming languages and security flaws in the future.

5.6 Grey Wolf Optimization Algorithm (GWO)

2014[67], work by “Seyedali Mirjalili” et al. was motivated by the predatory performance of grey

wolf packs. One of the more modern metaheuristic swarm intelligence algorithms is the Grey Wolf

Optimizer (GWO). Due to its exceptional advantages over other swarm intelligence techniques—

namely, the fact that it requires no derivation knowledge during the initial search and has very few

parameters—it has been extensively used for a wide range of optimization challenges. Additionally,

it is straightforward, user-friendly, adaptable, scalable, and has the extraordinary capacity to combine

exploration and exploitation in a way that promotes enabling convergence during the search process.

 In[68], the author employed two different binary iterations of the Gray-Wolf method to select

the best features from the dataset. The best datasets that were produced were subjected to a variety of

machine-learning techniques. The test results show that the proposed SQL injection detector

achieves 99.68% accuracy, 99.40% precision, and 98.72% sensitivity. The proposed method

enhances attack detection systems by selecting 20% of the most valuable information.

Table 3. Summary of Bio-inspired Algorithm

Algorithm Refer.

No.

Author(s) year Overview

Application

Genetic

 Algorithm

(GA)

[55] John

Holland

1975 Genetic algorithms (GAs)

are heuristic optimization

methods that draw

inspiration from the

phenomenon of natural

selection. These algorithms

aim to identify optimal

solutions by emulating the

evolutionary process, which

involves selection,

crossover, and mutation.

In computer science, GA is

among the most significant

algorithms. It can be useful in

many areas, such as robotics,

economics, scheduling design,

and marketing.

Artificial Bee

Colony

[58] Karaboga 2005 This algorithm was

proposed by Karaboga for

The ABC algorithm is

extensively utilized in

Zainab H. Jody

352

Algorithm

(ABCA)

optimizing numerical

problems. The algorithm

simulates the intelligent

foraging conduct of honey

bee swarms. It is a very

undemanding, strong, and

population-based stochastic

optimization algorithm.

optimization challenges,

encompassing numerical

optimization, engineering

optimization, and neural network

optimization, owing to its

efficacy and straightforwardness.

Cuckoo

Search

Algorithm

(CSA)

[60] Xin-She

Yang and

Suash Deb

2009 The (CSA) is a powerful

metaheuristic method for

optimization It belongs to

the family of nature-

inspired algorithms, a

family of stochastic

optimization methods based

on imitating certain

biological or social

processes commonly found

in the natural world. These

methods have gained a lot

of popularity in recent years

due to their ability to deal

with large, complex, and

dynamic real-world

optimization problems.

Although they do not ensure

finding the global optimal

solution, in most cases, they

can find more accurate

solutions to many problems

than the classical

mathematical optimization

methods.

Due to its efficacy in resolving

intricate issues, the CSA has been

extensively utilized in various

domains, including engineering

optimization, scheduling

challenges, and machine learning.

The technique under

consideration exhibits a diverse

array of applications,

encompassing the optimization of

network architectures and the

resolution of economic dispatch

challenges within power systems.

Bat

Algorithm

(BT)

[62] Xin-She

Yang

2010 Yang suggested the Bat

algorithm in 2010. The

basic Bat algorithm is bio-

inspired. It’s based on the

characteristics of bat bio-

sonar or echolocation. Bats

in the wild emit ultrasonic

waves into the environment

to aid in hunting or

navigation.

To solve optimization problems,

the Bat Algorithm (BA) utilizes

Continuous Optimization,

Combinatorial Optimization and

Scheduling, Inverse Problems

and Parameter Estimation, Image

Processing, Fuzzy Logic, and

Other Applications.

Ant Colony

Optimization

Algorithm

(ACO)

[65] Marco

Dorigo

1992 The algorithm described

above is a probabilistic

methodology employed to

resolve computational

issues by locating optimal

routes within graphs, hence

yielding solutions of

reduced length. In the field

of network routing,

scheduling, and other

optimization activities, Ant

Colony Optimization

(ACO) utilizes the

principles of natural

efficiency to improve

performance. It is

influenced by the behaviour

Applications of ant colony

optimization (ACO) concerning

hydrology and hydrogeology

include irrigation water

allocation, urban drainage

network design, groundwater

long-term monitoring, reservoir

optimization, watershed

management, coastal aquifer

management, hydraulic

parameters stimulation, and

water distribution systems.

A Survey on Bio... J. Basrah Res. (Sci.) 50(1), 340 (2024)

353

6. Discussion

As cybersecurity threats become more sophisticated, academic circles have paid close

attention to the study of SQL injection (SQLI) attacks. These attacks, which use flaws in web

applications to compromise database dependability, represent a persistent and extensive

threat to information security. Most people agree that SQLI can violate data integrity,

circumvent authentication systems, and jeopardize confidentiality. It is essential to know

every approach to prevent or reduce attacks. This work's main contribution is the thorough

description of using bio-inspired algorithms to counter SQL injection attacks is one of the

main contributions of this work. The authors investigate how many bio-inspired algorithms,

such as swarm-based and genetic algorithms (GA), can improve security against SQL

injection attacks. These bio-inspired algorithms are a useful tool for defending against SQL

injection attacks and can improve the accuracy, recall, and F1 scores of identifying dangerous

payloads. Furthermore, the paper demonstrates the ability to construct sophisticated, adaptive

defences es against SQL injection attacks by fusing machine learning techniques with bio-

inspired techniques. This combination may result in more intricate algorithms that can

change in response to attack trends. Such a persistent threat would strengthen cybersecurity.

The writers underline the need for collaboration between academics and businesses to

promote the exchange of knowledge and resources, which can expedite the development of

these new defences.

7. Conclusion and Future Directions
 An overview of bio-inspired algorithms' application to SQL injection attacks (SQLIAs) closes

this paper. It emphasizes how dangerous SQLIAs are still to web applications, as well as how

advanced detection and prevention methods are required. The survey shows how effective machine

learning techniques are for identifying and mitigating these risks. The bio-inspired technique can

effectively identify and compare SQL injection attempts. However, there are three specific

applications of bio-inspired methods currently available. Finding a new kind of SQL injection attack

comes first, followed by choosing supplementary features. We then fine-tune the settings of the

machine-learning algorithms. Furthermore, integrating these algorithms with machine learning

methods improves defensive systems' resistance and flexibility to changing attack plans. Future work

should focus on developing flexible algorithms that can adapt in response to attack strategies and

promoting industry-academy collaboration to leverage shared resources and expertise.

Acknowledgment

The author would like to thank the anonymous reviewers for their efforts.

References

[1] J. H. B. Johny, W. A. F. B. Nordin, N. M. B. Lahapi, and Y.-B. Leau, “SQL Injection prevention

in web application: a review,” in Advances in Cyber Security: Third International Conference,

of ants, which adeptly

navigate the most direct

path to access food sources.

Grey wolf

optimization

algorithm

(GWO)

[67] Seyedali

Mirjalili

2014 The (GWO) algorithm is a

novel meta-heuristic,

inspired by the social

hunting behaviour of grey

wolves.

The application of (GWO) is

Engineering Design Problems,

Robotic and path planning, and

Image processing.

Zainab H. Jody

354

ACeS 2021, Penang, Malaysia, August 24–25, 2021, Revised Selected Papers 3, Springer, 2021,

pp. 568–585.

[2] M. Alghawazi, D. Alghazzawi, and S. Alarifi, “Detection of sql injection attack using machine

learning techniques: a systematic literature review,” J. Cybersecurity Priv., vol. 2, no. 4, pp. 764–

777, 2022.

[3] J. Strickland, “Web Operating Systems Work.” Accessed: Feb. 26, 2024. [Online]. Available:

https://computer.howstuffworks.com/web-operating-system.htm

[4] Foundation, “Owasp top ten.” Accessed: Apr. 20, 2024. [Online]. Available:

https://owasp.org/www- project- top- ten/

[5] M. A. Hussain, H. Jin, Z. A. Hussien, Z. A. Abduljabbar, S. H. Abbdal, and A. Ibrahim, “DNS
Protection against Spoofing and Poisoning Attacks,” in 2016 3rd International Conference on
Information Science and Control Engineering (ICISCE), 2016, pp. 1308–1312. doi:
10.1109/ICISCE.2016.279.

[6] G. Deepa, P. S. Thilagam, F. A. Khan, A. Praseed, A. R. Pais, and N. Palsetia, “Black-box

detection of XQuery injection and parameter tampering vulnerabilities in web applications,” Int.

J. Inf. Secur., vol. 17, no. 1, pp. 105–120, 2018, doi: 10.1007/s10207-016-0359-4.

[7] Y. Pan et al., “Detecting web attacks with end-to-end deep learning,” J. Internet Serv. Appl., vol.

10, no. 1, p. 16, 2019, doi: 10.1186/s13174-019-0115-x.

[8] W. Zhang et al., “Deep neural network-based SQL injection detection method,” Secur. Commun.

Networks, vol. 2022, 2022.

[9] T. Pattewar, H. Patil, H. Patil, N. Patil, M. Taneja, and T. Wadile, “Detection of SQL injection

using machine learning: a survey,” Int. Res. J. Eng. Technol.(IRJET), vol. 6, no. 11, pp. 239–246,

2019.

[10] Y. Fang, J. Peng, L. Liu, and C. Huang, “WOVSQLI: Detection of SQL Injection Behaviors Using

Word Vector and LSTM,” in Proceedings of the 2nd International Conference on Cryptography,

Security and Privacy, in ICCSP 2018. New York, NY, USA: Association for Computing

Machinery, 2018, pp. 170–174. doi: 10.1145/3199478.3199503.

[11] Q. Li, F. Wang, J. Wang, and W. Li, “LSTM-Based SQL Injection Detection Method for

Intelligent Transportation System,” IEEE Trans. Veh. Technol., vol. 68, no. 5, pp. 4182–4191,

2019, doi: 10.1109/TVT.2019.2893675.

[12] D. Chen, Q. Yan, C. Wu, and J. Zhao, “SQL Injection Attack Detection and Prevention

Techniques Using Deep Learning,” J. Phys. Conf. Ser., vol. 1757, no. 1, 2021, doi: 10.1088/1742-

6596/1757/1/012055.

[13] S. Abaimov and G. Bianchi, “A survey on the application of deep learning for code injection

detection,” Array, vol. 11, p. 100077, 2021, doi: https://doi.org/10.1016/j.array.2021.100077.

[14] S. Son, K. S. McKinley, and V. Shmatikov, “Diglossia: detecting code injection attacks with

precision and efficiency,” in Proceedings of the 2013 ACM SIGSAC Conference on Computer \&

Communications Security, in CCS ’13. New York, NY, USA: Association for Computing

Machinery, 2013, pp. 1181–1192. doi: 10.1145/2508859.2516696.

[15] R. Yan, X. Xiao, G. Hu, S. Peng, and Y. Jiang, “New deep learning method to detect code injection

attacks on hybrid applications,” J. Syst. Softw., vol. 137, pp. 67–77, 2018, doi:

https://doi.org/10.1016/j.jss.2017.11.001.

[16] J. Jain, “Artificial intelligence in the cyber security environment,” Artif. Intell. Data Min.

Approaches Secur. Fram., pp. 101–117, 2021.

[17] Z. Marashdeh, K. Suwais, and M. Alia, “A survey on sql injection attack: Detection and

challenges,” in 2021 International Conference on Information Technology (ICIT), IEEE, 2021,

pp. 957–962.

[18] M. Hasan, Z. Balbahaith, and M. Tarique, “Detection of SQL injection attacks: a machine learning

approach,” in 2019 International Conference on Electrical and Computing Technologies and

Applications (ICECTA), IEEE, 2019, pp. 1–6.

[19] H. Alyasiri, J. A. Clark, and D. Kudenko, “Evolutionary computation algorithms for detecting

known and unknown attacks,” in Innovative Security Solutions for Information Technology and

Communications: 11th International Conference, SecITC 2018, Bucharest, Romania, November

8–9, 2018, Revised Selected Papers 11, Springer, 2019, pp. 170–184.

A Survey on Bio... J. Basrah Res. (Sci.) 50(1), 340 (2024)

355

[20] H. Alyasiri, Evolving Rules for Detecting Cross-Site Scripting Attacks Using Genetic

Programming, vol. 1347. Springer Singapore, 2021. doi: 10.1007/978-981-33-6835-4_42.

[21] H. Alyasiri, J. A. Clark, A. Malik, and R. de Fréin, “Grammatical evolution for detecting

cyberattacks in Internet of Things environments,” in 2021 International Conference on Computer

Communications and Networks (ICCCN), IEEE, 2021, pp. 1–6.

[22] Z. Z. Jundi and H. Alyasiri, “Android Malware Detection Based on Grammatical Evaluation

Algorithm and XGBoost,” in 2023 Al-Sadiq International Conference on Communication and

Information Technology (AICCIT), IEEE, 2023, pp. 70–75.

[23] M. A. Hussain, H. Jin, Z. A. Hussien, Z. A. Abduljabbar, S. H. Abbdal, and A. Ibrahim, “DNS

Protection against Spoofing and Poisoning Attacks,” in 2016 3rd International Conference on

Information Science and Control Engineering (ICISCE), 2016, pp. 1308–1312. doi:

10.1109/ICISCE.2016.279.

[24] Y. Wimukthi, H. R. Sri, H. Kottegoda, D. Andaraweera, and P. Palihena, “A comprehensive

review of methods for SQL injection attack detection and prevention SEE PROFILE A

comprehensive review of methods for SQL injection attack detection and prevention,” no. October,

pp. 1–10, 2022, [Online]. Available: https://www.researchgate.net/publication/364935556

[25] W. G. Halfond, J. Viegas, and A. Orso, “A classification of SQL-injection attacks and

countermeasures,” in Proceedings of the IEEE international symposium on secure software

engineering, IEEE Piscataway, NJ, 2006, pp. 13–15.

[26] M. A. Hussain, Z. Alaa Hussien, Z. A. Abduljabbar, S. Abdulridha Hussain, and M. A. Al Sibahee,

“Boost Secure Sockets Layer against Man-in-the-Middle Sniffing Attack via SCPK,” in 2018

International Conference on Advanced Science and Engineering (ICOASE), 2018, pp. 295–300.

doi: 10.1109/ICOASE.2018.8548813.

[27] M. A. Hussain, H. Jin, Z. A. Hussien, Z. A. Abduljabbar, S. H. Abbdal, and A. Ibrahim, “ARP

Enhancement to Stateful Protocol by Registering ARP Request,” in 2016 International

Conference on Network and Information Systems for Computers (ICNISC), 2016, pp. 31–35. doi:

10.1109/ICNISC.2016.017.

[28] M. A. Hussain et al., “Provably throttling SQLI using an enciphering query and secure matching,”

Egypt. Informatics J., vol. 23, no. 4, pp. 145–162, 2022.

[29] T. Muhammad and H. Ghafory, “SQL Injection Attack Detection Using Machine Learning

Algorithm,” Mesopotamian J. CyberSecurity, vol. 2022, pp. 5–17, 2022, doi:

10.58496/MJCS/2022/002.

[30] M. Nasereddin, A. ALKhamaiseh, M. Qasaimeh, and R. Al-Qassas, “A systematic review of

detection and prevention techniques of SQL injection attacks,” Inf. Secur. J., vol. 32, no. 4, pp.

252–265, 2023, doi: 10.1080/19393555.2021.1995537.

[31] V. Abdullayev and D. A. S. Chauhan, “SQL Injection Attack: Quick View,” Mesopotamian J.

Cyber Secur., vol. 2023, pp. 30–34, 2023, doi: 10.58496/mjcs/2023/006.

[32] H. R. Y. Wimukthi, H. Kottegoda, D. Andaraweera, and P. Palihena, “A comprehensive review

of methods for SQL injection attack detection and prevention,” Int. J. Sci. Res. Sci. Technol.

IJSRST, 2022.

[33] M. A. Hussain et al., “Web application database protection from SQLIA using permutation

encoding,” ACM Int. Conf. Proceeding Ser., no. March, pp. 13–21, 2021, doi:

10.1145/3459955.3460594.

[34] J. Abirami, R. Devakunchari, and C. Valliyammai, “A top web security vulnerability SQL

injection attack - Survey,” ICoAC 2015 - 7th Int. Conf. Adv. Comput., 2016, doi:

10.1109/ICoAC.2015.7562806.

[35] J. R. Khan, S. A. Farooqui, and A. A. Siddiqui, “A Survey on SQL Injection Attacks Types &

their Prevention Techniques,” J. Indep. Stud. Res. Comput., vol. 21, no. 2, pp. 10–13, 2023, doi:

10.31645/jisrc.23.21.2.1.

[36] W. B. Demilie and F. G. Deriba, “Detection and prevention of SQLI attacks and developing

compressive framework using machine learning and hybrid techniques,” J. Big Data, vol. 9, no.

1, 2022, doi: 10.1186/s40537-022-00678-0.

[37] K. Elshazly, Y. Fouad, M. Saleh, and A. Sewisy, “A survey of SQL injection attack detection and

prevention,” J. Comput. Commun., vol. 2014, 2014.

Zainab H. Jody

356

[38] Z. C. S. S. Hlaing and M. Khaing, “A detection and prevention technique on sql injection attacks,”

in 2020 IEEE Conference on Computer Applications (ICCA), IEEE, 2020, pp. 1–6.

[39] P. Suri, “DATA PROTECTION : SQL INJECTION PREVENTION,” no. 01, pp. 2716–2732,

2024.

[40] D. Chen, Q. Yan, C. Wu, and J. Zhao, “Sql injection attack detection and prevention techniques

using deep learning,” in Journal of Physics: Conference Series, IOP Publishing, 2021, p. 12055.

[41] T. Jones-Low, “Security benefits are provided by using stored procedures to access data.”

Accessed: Apr. 22, 2024. [Online]. Available: https://stackoverflow.com/questions/421553/what-

security-benefits-are-provided-by-using-stored-procedures-to-access-data

[42] K. Ahmad and M. Karim, “A method to prevent SQL injection attack using an improved

parameterized stored procedure,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 6, 2021.

[43] A. Goyal and P. Matta, “Beyond the Basics: A Study of Advanced Techniques for Detecting and

Preventing SQL Injection Attacks,” in 2023 4th International Conference on Smart Electronics

and Communication (ICOSEC), 2023, pp. 628–631. doi: 10.1109/ICOSEC58147.2023.10276077.

[44] R. Johari and P. Sharma, “A survey on web application vulnerabilities (SQLIA, XSS) exploitation

and security engine for SQL injection,” in 2012 international conference on communication

systems and network technologies, IEEE, 2012, pp. 453–458.

[45] R. Johari and P. Sharma, “A survey on web application vulnerabilities (SQLIA, XSS) exploitation

and security engine for SQL injection,” Proc. - Int. Conf. Commun. Syst. Netw. Technol. CSNT

2012, pp. 453–458, 2012, doi: 10.1109/CSNT.2012.104.

[46] Z. S. Alwan and M. F. Younis, “Detection and prevention of SQL injection attack: a survey,” Int.

J. Comput. Sci. Mob. Comput., vol. 6, no. 8, pp. 5–17, 2017.

[47] B. Brindavathi, A. Karrothu, and C. Anilkumar, “An Analysis of AI-based SQL Injection (SQLi)

Attack Detection,” Proc. 2023 2nd Int. Conf. Augment. Intell. Sustain. Syst. ICAISS 2023, no.

Icaiss, pp. 31–35, 2023, doi: 10.1109/ICAISS58487.2023.10250505.

[48] M. S. Husain, “Nature inspired approach for intrusion detection systems,” Des. Anal. Secur.

Protoc. Commun., pp. 171–182, 2020.

[49] S. Roy, S. Biswas, and S. S. Chaudhuri, “Nature-inspired swarm intelligence and its applications,”

Int. J. Mod. Educ. Comput. Sci., vol. 6, no. 12, p. 55, 2014.

[50] A. Darwish, “Bio-inspired computing: Algorithms review, deep analysis, and the scope of

applications,” Futur. Comput. Informatics J., vol. 3, no. 2, pp. 231–246, 2018, doi:

https://doi.org/10.1016/j.fcij.2018.06.001.

[51] H. Tavakoli and B. D. Barkdoll, “Sustainability-based optimization algorithm,” Int. J. Environ.

Sci. Technol., vol. 17, no. 3, pp. 1537–1550, 2020, doi: 10.1007/s13762-019-02535-9.

[52] E. Atashpaz-Gargari and C. Lucas, “Imperialist competitive algorithm: an algorithm for

optimization inspired by imperialistic competition,” in 2007 IEEE congress on evolutionary

computation, Ieee, 2007, pp. 4661–4667.

[53] A. H. Gandomi and A. H. Alavi, “Krill herd: A new bio-inspired optimization algorithm,”

Commun. Nonlinear Sci. Numer. Simul., vol. 17, no. 12, pp. 4831–4845, 2012, doi:

10.1016/j.cnsns.2012.05.010.

[54] R. C. Jeyavim Sherin and K. Parkavi, “Investigations on Bio-Inspired Algorithm for Network

Intrusion Detection – A Review,” Int. J. Comput. Networks Appl., vol. 9, no. 4, pp. 399–423, 2022,

doi: 10.22247/ijcna/2022/214503.

[55] John H. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan

Press, 1975.

[56] J. Guo, Y. Li, and Z. Tu, “Research on System of Genetic Algorithm-Based SQL Injection Test

Data,” in 2023 IEEE 6th International Conference on Electronic Information and Communication

Technology (ICEICT), IEEE, 2023, pp. 717–722.

[57] A. S. Jaradat, A. Nasayreh, Q. Al-Na’amneh, H. Gharaibeh, and R. E. Al Mamlook, “Genetic

Optimization Techniques for Enhancing Web Attacks Classification in Machine Learning,” in

2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive

Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber

Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), IEEE, 2023, pp.

130–136.

A Survey on Bio... J. Basrah Res. (Sci.) 50(1), 340 (2024)

357

[58] D. Karaboğa, “AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL

OPTIMIZATION,”2005.[Online]. Available: https://api.semanticscholar.org/CorpusID:8215393

[59] G. H. Varazdin, Icwi Ac 2021 Genomic Data Analysis : Conceptual Framework for the

Application of Artificial Intelligence in Personalized, no. November. 2021.

[60] X.-S. Yang and S. Deb, “Cuckoo search via Lévy flights,” in 2009 World congress on nature &

biologically inspired computing (NaBIC), Ieee, 2009, pp. 210–214.

[61] S. Venkatramulu and C. V Guru Rao, “CSES: Cuckoo Search Based Exploratory Scale to Defend

Input-Type Validation Vulnerabilities of HTTP Requests,” in Proceedings of the Second

International Conference on Computational Intelligence and Informatics: ICCII 2017, Springer,

2018, pp. 245–256.

[62] X.-S. Yang, “A new metaheuristic bat-inspired algorithm,” in Nature inspired cooperative

strategies for optimization (NICSO 2010), Springer, 2010, pp. 65–74.

[63] X. Yang and A. Hossein Gandomi, “Bat algorithm: a novel approach for global engineering

optimization,” Eng. Comput., vol. 29, no. 5, pp. 464–483, 2012.

[64] F. K. Alarfaj and N. A. Khan, “Enhancing the Performance of SQL Injection Attack Detection

through Probabilistic Neural Networks,” Appl. Sci., vol. 13, no. 7, 2023, doi:

10.3390/app13074365.

[65] M. Dorigo, “Optimization, learning and natural algorithms,” Ph. D. Thesis, Politec. di Milano,

1992.

[66] K. Baptista, A. M. Bernardino, and E. M. Bernardino, “Detecting SQL Injection Vulnerabilities

Using Nature-inspired Algorithms,” in International Conference on Computational Science,

Springer, 2022, pp. 451–457.

[67] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Adv. Eng. Softw., vol. 69, pp.

46–61, 2014.

[68] B. Arasteh, B. Aghaei, B. Farzad, K. Arasteh, F. Kiani, and M. Torkamanian-Afshar, “Detecting

SQL injection attacks by binary gray wolf optimizer and machine learning algorithms,” Neural

Comput. Appl., pp. 1–22, 2024.

 Journal of Basrah Researches (Sciences) 50(1), 340 (2024)

 DOI: https://doi.org/10.56714/bjrs.50.1.27

*Corresponding author email: zainabh.alfaham@student.uokufa.edu.iq

 ©2022 College of Education for Pure Science, University of

Basrah. This is an Open Access Article Under the CC by

License the CC BY 4.0 license.

 ISSN: 1817-2695 (Print); 2411-524X (Online)

Online at: https://jou.jobrs.edu.iq

Citation: Zainab H. Jody, J.
Basrah Res. (Sci.) 50(1), 340 (2024).

DOI:https://doi.org/10.56714/bjrs.50

.1.27

 هجمات طبيعة للحماية من الخوارزمية المستوحاة من ال استخدام دراسة استقصائية حول
 البيانات حقن قواعد

 زينب حيدر جودي

 جامعة الكوفة, النجف, العراق -كلية علوم الحاسوب والرياضيات -قسم الحاسوب

 معلومات البحث الملخص

، تهديدات كبيرة لأمن التطبيقات عبر SQLI، أو هجمات SQLتوفر هجمات حقن

الإنترنت. إنها تستفيد من نقاط الضعف في أنظمة قواعد البيانات ويمكن أن تؤدي

إلى الوصول غير المصرح به إلى البيانات الحساسة وتسويتها. تبحث هذه الدراسة

، في العديد من الخوارزميات المستوحاة من العمليات الحيوية لمعالجة هذه الهجمات

وتقييم تطبيقاتها وإمكاناتها لتعزيز تدابير الأمن السيبراني. تسلط الملاحظة الضوء

على أهمية الدراسة المستمرة وتحسين خوارزميات الكشف، لا سيما تلك التي تستفيد

من القدرة على التكيف المتأصلة في التقنيات المستوحاة من الحياة والتعلم الآلي. من

الاستراتيجيات المتقدمة للحماية بشكل فعال من هجمات حقن الضروري استخدام هذه

SQL وهذا يتطلب التعاون بين الأوساط الأكاديمية والصناعة. ولضمان الاعتمادية .

لمواكبة الدفاعية استراتيجياتنا تعديل علينا الرقمية، يجب بالثقة لأنظمتنا والجدارة

ير الضوء على الحاجة الملحة إلى التهديدات السيبرانية دائمة التطور. ويسلط التقر

حلول أمنية تتسم بالمرونة والقابلية للتكيف للدفاع ضد التهديدات السيبرانية المتغيرة

 باستمرار.

 2024 ايار 4الاستلام

 2024حزيران 18القبول

 2024حزيران 30النشر

 المفتاحية الكلمات

خوارزمية مستوحاة من الحيوية، -1

نظرة عامة على خلفية حقن -2

SQL ،3- تقنيات الكشف عن حقن

SQL .والوقاية

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56714/bjrs.50.1.27
https://creativecommons.org/licenses/by/4.0/
https://jou.jobrs.edu.iq/
https://doi.org/10.56714/bjrs.50.1.
https://doi.org/10.56714/bjrs.50.1.

