
 Journal of Basrah Researches (Sciences) 50(1), 304 (2024)

 DOI: https://doi.org/10.56714/bjrs.50.1.24

*Corresponding author email : zaid.ameen@uobasrah.edu.iq

 ©2022 College of Education for Pure Science, University of

Basrah. This is an Open Access Article Under the CC by

License the CC BY 4.0 license.

 ISSN: 1817-2695 (Print); 2411-524X (Online)

Online at: https://jou.jobrs.edu.iq

Citation: Salim S. B. , Zaid A. A., J.

Basrah Res. (Sci.) 50(1), 304 (2024).
DOI:https://doi.org/10.56714/bjrs.50.1.24

Performing Encrypted Cloud Data Keyword

Searches Using Blockchain Technology on Smart

Devices

Salim Sabah Bulbul 1 , Zaid Ameen Abduljabbar 2,*

1Directorate General of Education Basrah, Ministry of Education, Basrah, Iraq
2Department of Computer Science, College of Education for Pure Sciences, University of Basrah,

Basrah, 61004, Iraq

A R T I C L E I N F O A B S T R A C T

Received 16 May 2024

Accepted 25 June 2024

Published 30 June 2024

Data owners seeking to boost processing power, storage, or

bandwidth can take advantage of cloud computing services.

However, this shift poses new challenges related to privacy

and data security. Searchable Encryption (SE), which

combines encryption and search techniques, addresses these

issues (violation of data users' privacy) by allowing user data

to be encrypted, transmitted to a cloud server, and searched

using keywords. Despite its benefits, several recent real-

world attacks have raised concerns about the security of

searchable encryption. Ensuring forward and backward

privacy is likely to become a standard requirement in the

development of new SE systems. To address these issues,

we propose a scheme that exclusively uses symmetric

cryptographic primitives, achieving high communication

efficiency and forward and backward privacy. In addition,

we emphasize improved I/O efficiency because only the

results of subsequent updates are loaded when searching.

The time required to retrieve results is so significantly

reduced compared to existing SE methods that we have

shown that our scheme achieves superior efficiency.

Moreover, by integrating blockchain network services with

cloud services, we have developed a searchable intelligent

cryptosystem suitable for lightweight smart devices. In our

study conducted on the Ethereum network, we found our

method to be both efficient and secure, especially when

compared to methods such as PPSE and Jiang. The results

indicate that our system delivers results in terms of

performance and privacy within dynamic cloud

environments making it a solution for protecting confidential

information.

K e y w o r d s :

I/O efficiency, blockchain

network, symmetric primitives,

searchable encryption (SE),

backward-security, forward-

security.

1. Introduction

The rapid development of cloud computing and mobile Internet is transforming people's

lifestyles by aggregating substantial processing and storage power in the cloud. Service providers

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56714/bjrs.50.1.24
https://creativecommons.org/licenses/by/4.0/
https://jou.jobrs.edu.iq/
https://doi.org/10.56714/bjrs.50.1.
https://orcid.org/0009-0005-2329-8721
https://orcid.org/0000-0002-8239-1409

Performing Encrypted Cloud... J. Basrah Res. (Sci.) 50(1), 304 (2024).

305

offer on-demand services supporting a range of customized applications, benefiting customers with

limited resources. Over the past decade, cloud computing has garnered significant interest from

academia and industry due to its efficiency and low cost. However, the reliability of third-party

service providers and the risks associated with storing unencrypted data are major concerns.

Searchable encryption has emerged as a solution to these privacy risks. Users who employ

searchable symmetric encryption (SSE) systems can upload their encrypted files to a distant server

and search them without the need for decryption. The concept of storage-as-a-service, offered by

providers like Google Cloud, Azure Storage, and Amazon Cloud, has increased the demand for

searchable encryption. This technique allows users to store data on distant servers while

maintaining privacy. Traditional encryption protects outsourced data but is not effective for

searching encrypted content. Searchable encryption addresses this by creating an encrypted index

sent to the cloud provider along with the encrypted data. Clients can then use encrypted search

tokens to query this index. The server uses these tokens and the encrypted index to find matches,

ensuring data privacy even with an untrusted server.

Despite the development of various techniques [1], [2], [3], [4], [5] for searching encrypted data,

some are not suitable for deployment on smart devices in an IoT cloud environment due to their

lack of lightweight characteristics and insufficient privacy maintenance. Since 2012, several attacks

[6] and [7] have emerged, allowing untrusted servers to recover keywords from clients' search

tokens, thereby revealing significant information about the encrypted data. These attacks exploit

information leakage that occurs during the search and update phases of searchable encryption

schemes. For instance, the deterministic creation of search tokens can lead to a 𝑠𝑒𝑎𝑟𝑐ℎ 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 [8]

leakage, where the server identifies repeated search terms.

Effective Searchable Symmetric Encryption (SSE) systems [9], [10], [11], [12], [13], [14], [15]

permit some information leakage, such as 𝑎𝑐𝑐𝑒𝑠𝑠 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 [8]—the collection of documents

containing the search term. Dynamic SSE techniques [16], [17] support update activities on the

document collection. Zhang et al.'s [7] recent work demonstrated an adaptive attack that can fully

disclose client requests by introducing a small number of files into the encrypted data storage. This

attack's consequences are severe, as recovered keywords help the server decipher encrypted data

and assist in further statistical attacks, underscoring the need for forward privacy.

Forward privacy ensures newly added files cannot be linked to prior search terms, preventing such

attacks. Stefanov et al.[9] emphasized that a secure SSE system must provide both forward and

backward privacy. Forward privacy prevents file-injection[7] attacks, while backward privacy [18]

ensures that deleted files remain private. Initial forward privacy schemes were introduced in earlier

research [19], with subsequent studies [10], [20], [21], [22] continuing to address this issue.

Backward privacy schemes aim to minimize leakage that occurs when a search query for a keyword

can be linked to deleted documents.

Emerging technologies like blockchain have facilitated frameworks allowing individuals to manage

access to valuable private data, such as genetic and medical information. Numerous studies have

explored using blockchain as an access control system, empowering individuals to control their

health data. Recent research proposed methods for recording medical data access logs on

blockchain's immutable ledger [23], [24], ensuring transparency and accountability. One significant

challenge in healthcare is the inability of facilities to share data storage units, delaying patient

treatment programs. Recent research [25] has developed token-based access mechanisms using

blockchain smart contracts to address this, enabling efficient interoperability among health

institutions and facilitating timely patient medical records exchange. This advancement aims to

improve care coordination and expedite treatment processes.

Contributions: In this work, we develop and implement a single-keyword Searchable Symmetric

Encryption (SSE) dynamic technique that uses two rounds for search queries, providing both

forward privacy and Type-II backward privacy. This approach ensures that the system remains

secure against adaptive attacks while maintaining user privacy during file additions and deletions.

Our approach offers the following attributes:

1. Forward Privacy: To prevent the server from connecting later update tokens to earlier search

tokens, new search tokens are created using a fresh key 𝑠𝑡.

Salim S. B. , Zaid A. A.

306

2. Backward Privacy: The server is not informed of update operations (add or delete) while

processing update queries, ensuring privacy during these operations. Our system achieves level

two of backward privacy.

3. Constant client storage: Our proposed work is the DSSE framework that satisfies Smart

Device Client SDC requirements while being effective, safe, and having a constant storage cost

on the client side. Furthermore, in terms of processing complexity throughout the search and

update procedures, our strategy is both practically and conceptually close to ideal. Nonetheless,

Table 1 illustrates how well it compares to earlier methods.

4. Efficient Index Management: During a search, accessed items in the encrypted index are

identified and removed, preventing the index from growing in size unnecessarily.

5. Optimized Input/Output: Previous search results, which are already compromised, are stored

on the server in plaintext. This avoids the overhead of re-encrypting them, allowing for efficient

and continuous reading of plaintext results at the optimal location.

The structure of the remainder of the paper is as follows: The most relevant SSE schemes are

reviewed in Section 2. Section 3 provides the background and preliminary information necessary to

understand our proposed plan. Section 4 outlines our proposed framework for secure data exchange,

including implementation details. Section 5 presents the security evaluation, experimental setup, and

performance analysis. Finally, Section 6 concludes the paper.

2. Previews work

Searchable Symmetric Encryption (𝑆𝑆𝐸) and construction with linear search time were first

presented by Song et al. [26]. Later on, Curtmola et al. enhanced this by offering the first design

with sub-linear search time by tracking a list of document IDs for each keyword using an inverted

index [8]. The static scenario, in which the encrypted database is kept on the cloud server without

any further changes, has also been an issue of later studies [27], [28], [29].

To facilitate database modifications, Dynamic Searchable Symmetric Encryption (𝐷𝑆𝑆𝐸) was

created to allow users to add and delete keyword/document combinations in the database [19], [30].

Increasing the computational complexity of the search protocol has been one of the main areas of

interest for many academics. The first DSSE method with sub-linear search time was presented by

Kamara et al. [31], although their solution revealed the hashes of the modified texts' keywords. Later,

Kamara and Papamanthou raised the space complexity in order to solve this problem [16].

Nevertheless, these techniques are still susceptible to more sophisticated assaults including leakage-

abuse attacks [6] and file injection attacks [7]. These assaults draw attention to the significance of

forward security, which was explicitly established in [9] as an essential part of 𝐷𝑆𝑆𝐸.

Despite Stefanov et al. [9] presented a forward-secure DSSE technique; their method has minimal

computational complexity since it rebuilds the data structure at the update protocol level. Some

systems, like Oblivious RAM[32], provide forward security using sophisticated cryptography;

however, these methods are computationally expensive[20], [33]. Forward-secured schemes with

theoretically optimal computing complexity exist but have certain limitations[10], [18]. 𝑆𝑜𝑝ℎ𝑜𝑠, for

instance, creates search tokens using an inverted index and forwards them to the server for further

searching without revealing the actual terms[10]. 𝑆𝑜𝑝ℎ𝑜𝑠 establishes a link between the search

tokens and update tokens using trapdoor permutation, offering better theoretical processing

complexity than[33]. However, since the trapdoor permutation relies on public-key primitives,

𝑆𝑜𝑝ℎ𝑜𝑠 is inefficient in practical use. An informal mention of backward security can be found in [9],

followed by the formal definition and structures providing this attribute provided by Bost et al.[18] .

The systems Janus and 𝐷𝑖𝑎𝑛𝑎del , as described in[18], encounter inefficiencies with puncturable

encryption and restrictions on keyword/document pairings, respectively. Subsequently, Chamani et

al. [34] presented three strategies. Among them, Mitra requires two-round communication but

achieves optimal computational and communication complexity. Conversely, the other two

strategies trade off compute and transmission costs for backward security.

Performing Encrypted Cloud... J. Basrah Res. (Sci.) 50(1), 304 (2024).

307

Our proposed DSSE framework addresses the weaknesses identified in previous works by ensuring

both forward and backward privacy through the use of symmetric key operations, thereby enhancing

performance and security. The system eliminates the need for public key operations, reducing

computational overhead and making it suitable for use in resource-constrained environments.

Additionally, our approach maintains constant client storage costs, which is a significant

improvement over previous methods that often require substantial storage for maintaining encrypted

indices and states.

Utilizing a three-party model comprising the data owner, the server with the encrypted database, and

blockchain nodes housing local databases it lessens the computational load and storage cost on the

client, our system guarantees data integrity and security. By generating different encrypted values

for the same keyword with each update query. This architecture renders our framework suitable for

various sensitive systems, thereby amplifying its practical value and widening its potential influence.

Table 1. compares many different DSSE schemes.

Scheme
Computation cost Forward

Security

Backward

Security

Owner

Storage Search Update

TWORAM[20] 𝑂̂(𝑎𝑤logN + log3N) 𝑂̂(log2N) × × 𝑂(1)

Mitra[34] 𝑂(𝑎𝑤) 𝑂(1) ✓ ✓ 𝑂(𝑚)

𝑆𝐷𝑎[35] 𝑂(𝑎𝑤 + 𝑙𝑜𝑔𝑁) 𝑂(𝑙𝑜𝑔𝑁) ✓ ✓ 𝑂(𝑚)

Sophos[18] 𝑂(𝑎𝑤) 𝑂(1) ✓ × 𝑂(𝑚)

CLOSE-FB[36] 𝑂(𝑎𝑤 + 𝐶𝑜𝑛) 𝑂(𝐶𝑜𝑛) ✓ ✓ 𝑂(1)

Jiang et al.[37] 𝑂(𝑠𝑤 × 𝑛𝑤 × 𝑜𝑤 × 𝑚) 𝑂(𝑙𝑜𝑔𝑁) ✓ × 𝑂(1)

PPSE[38] 𝑂(𝑠𝑤 × 𝑛𝑤 × 𝑜𝑤) 𝑂(𝑙𝑜𝑔𝑁) ✓ ✓ 𝑂(1)

Our scheme 𝑂(𝑜𝑤
′) 𝑂(1) ✓ ✓ 𝑂(1)

The number of (keyword, identifier) mappings is denoted by 𝑁. The variable 𝑚 represents the

number of distinct keywords 𝑤. Addition operations on a keyword 𝑤 are denoted by 𝑎𝑤, while 𝑑𝑤

signifies the number of delete operations performed on 𝑤. The total number of updates on 𝑤 is

represented by 𝑜𝑤, where 𝑜𝑤 = 𝑎𝑤 + 𝑑𝑤 . Since the last search, the number of updates is indicated

by 𝑜𝑤
′ , and 𝑛𝑤 refers to the number of documents currently associated with 𝑤 . The term

𝑂̂ encapsulates the log logN components. Satisfied is indicated by ✓, and unsatisfied by ×. As of the

last search, the constant 𝐶𝑜𝑛 represents the total number of computations that can be performed on

the hash function. 𝑠𝑤 reflects the count of searches executed for keyword 𝑤

3. Preliminaries

To understand our proposed framework, this section covers background information on blockchain,

fully homomorphic encryption, cloud server architecture, and inverted index. The key concepts and

notations used in this study are listed in the notation subsection.

3.1. Notation
In our system, 𝜆 serves as the indicator for the security parameter, while 𝐹 is employed as a

pseudorandom function. 𝐺 functions as a pseudorandom permutation, with 𝐺−1 representing its

inverse of pseudorandom permutation. The hash functions 𝐻1, 𝐻2 and 𝐻3 are utilized, each tailored

to produce outputs suitable for 𝜆. The 𝐶𝑆𝑃, It is an abbreviation for Cloud Server Provider, plays a

crucial role in our architecture. Additionally, the concatenation of strings 𝑎 and 𝑏 is denoted by 𝑎||𝑏.

Within our system, 𝐷𝑜𝑐 refers to files containing a collection of keywords. 𝑷(𝑂; 𝐵; 𝑆) signifies a

protocol engaging three key participants: the data owner, blockchain, and server. 𝐷𝑆𝑆𝐸, It is an

Salim S. B. , Zaid A. A.

308

abbreviation for Dynamic Searchable Symmetric Encryption, is integral to our framework, and the

XOR operation, represented by ⊕, forms a fundamental part of our cryptographic processes.

3.2. Blockchain
Blockchain, a distributed ledger of immutable and secure transactions, resides on nodes within a

decentralized peer-to-peer (P2P) network. Nodes employ a consensus mechanism to validate a block

containing all network transactions, which is compiled and appended to the blockchain[39]. This

verified block is then linked to the most recent block using cryptographic hash pointers. A block

consists of two main parts: the block header, containing metadata such as timestamp and hash values

of previous and current blocks, and the block content, housing transaction data. There are three types

of blockchain networks: consortium, private, and public, which find applications in various

industries like healthcare and banking. These networks allow participants to conduct business

without necessitating mutual trust. Smart contracts (SC) enforce the terms and conditions of

agreements between parties. A smart contract is an immutable computer program recorded on a

blockchain, automatically executing according to the predefined rules of a multiparty agreement. In

this work, to enforce agreements between Data Owners (DOs) and Data Users (DUs), we establish a

private blockchain network and deploy smart contracts on it.

Blockchain technology is crucial in enhancing the robustness of our DSSE framework. It eliminates

the need for trust by creating a secure, immutable record of all transactions. Despite these

advantages, trust in the underlying system and the smart contract code remains essential. Vigilance

is needed to detect and address any bugs or vulnerabilities that could pose security risks.

Advantages of Our Framework:

• Enhanced Security: Immutable records on the blockchain significantly boost security.

• Efficient Data Management: Automated security policies via smart contracts streamline data

management.

• Decentralized Storage: Data is distributed across multiple nodes, ensuring reliability even

during failures.

Incorporating blockchain into our DSSE framework results in a secure, efficient, and resilient

system.

3.3. System model

As shown in Figure 1, the parties in our system are the Storage Provider (CSP), Data Owner(DO),

Data User(DU), and Blockchain Nodes(BN). The characteristics and roles of each party are shown

as follows.

Performing Encrypted Cloud... J. Basrah Res. (Sci.) 50(1), 304 (2024).

309

Fig. 1. Our Framework Model

a) Service providers with robust processing and storage capacities are known as Cloud Storage

Providers (CSP). When a Data User (DU) makes a retrieval request, the CSP extracts the

corresponding ciphertext from the encrypted data stored on behalf of the data sender (users).

The final step involves returning the retrieval result to the DU and recording it on the

blockchain.

b) The Data User (DU) generates a search token based on the keywords and the local database

stored on the blockchain and then sends the trapdoor to the Cloud Storage Provider (CSP).

c) The blockchain network consists of nodes represented by candidates, hiring agencies, and other

entities. Its primary responsibility is to maintain the network and enable smart contracts, which

can be used to store user data and local databases.

d) Data Owners (DO) are responsible for maintaining the system and resolving issues. They play a

pivotal role in allocating and distributing access tokens to users. Their tasks include generating

encryption keys, creating and modifying the encrypted index, and generating keys for users

upon request, especially when users initiate search operations. Additionally, they create local

databases and store them on blockchains.

3.4. leakage Pattern

Let 𝑄 be a set of 𝑞-queries, with each pair (𝑡, 𝑤)representing a keyword and 𝑡 representing the

query's timestamp. The following outlines the leaking of the following [40]:

1. 𝑨𝒄𝒄𝒆𝒔𝒔 𝑷𝒂𝒕𝒕𝒆𝒓𝒏: This indicates the content of a document based on the query keyword. For

each query keyword 𝑤, the access pattern is defined as 𝑎𝑝(𝑤) = 𝐼𝐷(𝑤), 𝑤ℎ𝑒𝑟𝑒 𝐼𝐷(𝑤) is the

document's ID number.

2. 𝑺𝒆𝒂𝒓𝒄𝒉 𝑷𝒂𝒕𝒕𝒆𝒓𝒏: This shows the search patterns for each keyword 𝑤, defined as 𝑠𝑝(𝑤) =
{𝑡 ∣ (𝑡, 𝑤) ∈ 𝑄}.

3.5 The 𝒅𝒆𝒇𝒊𝒏𝒊𝒕𝒊𝒐𝒏 of our system consists of six probabilistic polynomial-time (𝑃𝑃𝑇) algorithms,

which are as follows: (𝑆𝑒𝑡𝑢𝑝, 𝐿𝑜𝑐𝑎𝑙𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒, 𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟, 𝑆𝑒𝑎𝑟𝑐ℎ, 𝐷𝑒𝑐, 𝑎𝑛𝑑 𝑈𝑝𝑑𝑎𝑡𝑒) . Each of

these algorithms plays a crucial role in the functionality and security of our scheme. The formal

constructions of these algorithms are outlined as follows:

Salim S. B. , Zaid A. A.

310

1. (𝑀𝑆𝐾; 𝐾𝑐𝑜𝑢𝑛𝑡, 𝑆𝑐𝑜𝑢𝑛𝑡; 𝑃𝑟𝑒𝑠 , 𝐸𝑖𝑑𝑥) ← 𝑺𝒆𝒕𝒖𝒑(𝜆, ⊥; ⊥; ⊥): This algorithm initializes the system

parameters 𝜆 and generates the necessary cryptographic keys 𝑀𝑆𝐾. It sets up the environment

for secure storage and retrieval operations. The algorithm generates a set of maps, which are

subsequently stored on both the server and the blockchain.

2. (𝐾𝑐𝑜𝑢𝑛𝑡[𝑤], 𝑆𝑐𝑜𝑢𝑛𝑡[𝑤]) ← 𝑳𝒐𝒄𝒂𝒍𝑹𝒆𝒕𝒓𝒊𝒆𝒗𝒆(𝑏𝑤): This algorithm is responsible for retrieving

the current state from the local database stored on the blockchain. It ensures that the most recent

information is accessed for processing subsequent operations. They are utilized when making

updates and search requests.

3. (𝐾𝑐𝑜𝑢𝑛𝑡[𝑤], 𝑆𝑐𝑜𝑢𝑛𝑡[𝑤], 𝑏𝑤) ← 𝑻𝒓𝒂𝒑𝒅𝒐𝒐𝒓(𝑀𝑆𝐾, w) : This algorithm generates the search

token, also referred to as the trapdoor. The inputs for this process are the keyword to be

searched and the master secret key (𝑀𝑆𝐾). The output is the Search Token, which encapsulates

the state of the most recent encrypted value along with the word counter. Cryptographic

techniques are employed to ensure the keyword remains confidential while enabling the search

functionality. These tokens are used when initiating a search request.

4. 𝐸𝑟𝑒𝑠 ← 𝑺𝒆𝒂𝒓𝒄𝒉(𝐾𝑐𝑜𝑢𝑛𝑡[𝑤], 𝑆𝑐𝑜𝑢𝑛𝑡[𝑤], 𝑏𝑤): The inputs for this algorithm include the search

token provided by the data owner. Represented by the current status 𝑆𝑐𝑜𝑢𝑛𝑡[𝑤] with the update

counter 𝐾𝑐𝑜𝑢𝑛𝑡[𝑤] on the keyword. 𝑤 The algorithm interacts with the server to locate the

encrypted data associated with the keyword 𝑤. It ensures that the search operation is both

efficient and secure, resulting in a set of encrypted values 𝐸𝑟𝑒𝑠 as the output.

5. 𝑃𝑟𝑒𝑠 ← 𝑫𝒆𝒄(𝐸𝑟𝑒𝑠): This decryption algorithm allows the data owner to decrypt the retrieved

encrypted 𝐸𝑟𝑒𝑠 results. It ensures that only authorized users can access the plaintext 𝑃𝑟𝑒𝑠 data

from the encrypted storage. In this step, the owner makes a filter for deletion value. They are

utilized when initiating a search request.

6. (𝑀𝑆𝐾; 𝐾𝑐𝑜𝑢𝑛𝑡
′, 𝑆𝑐𝑜𝑢𝑛𝑡

′; 𝑃𝑟𝑒𝑠
′ , 𝐸𝑖𝑑𝑥

′) ← 𝑼𝒑𝒅𝒂𝒕𝒆(𝑀𝑆𝐾, ind, doc, op; 𝐾𝑐𝑜𝑢𝑛𝑡 , 𝑆𝑐𝑜𝑢𝑛𝑡; E𝑖𝑑𝑥) :

This algorithm handles the addition and deletion operation 𝑜𝑝 of keyword-document pairs in

the encrypted index. It maintains the integrity and confidentiality of the data while allowing

dynamic updates to the system. The output of this algorithm is modified for these maps

𝐾𝑐𝑜𝑢𝑛𝑡
′, 𝑆𝑐𝑜𝑢𝑛𝑡

′; 𝑃𝑟𝑒𝑠
′ and 𝐸𝑖𝑑𝑥

′

These six algorithms collectively define the functionality and security properties of our dynamic

searchable encryption scheme, providing a comprehensive framework for secure and efficient data

storage and retrieval.

4. Our Optimize DSSE framework structure

Overview
In this section, we introduce our system, which is the first method for searchable encryption that

guarantees both forward and backward privacy. The primary objective of this scheme is to maintain

optimal communication complexity while eliminating the need for public key operations. Unlike

traditional approaches that pseudorandomly generate all states with a fixed key, our system employs

a novel method where the data owner selects a random ephemeral key each time a new state is

generated. In our approach, the current state for a keyword is derived by encrypting the previous

state using the ephemeral key. This ephemeral key is then encrypted with the current state and

stored on the server side. The state is integrated with the encrypted value contained within the

encrypted index. The server can retrieve the ephemeral key only when it is aware of the current

state. By using the ephemeral key, the server can decode the current state to obtain the previous

state, enabling it to conduct searches by iteratively collecting all states. A key advantage of our

system is that the client only needs to provide the server with the most recent state, keeping the

Performing Encrypted Cloud... J. Basrah Res. (Sci.) 50(1), 304 (2024).

311

search token size constant. Forward privacy is ensured because the server cannot deduce unknown

states from the currently known states and keys. Additionally, backward privacy is maintained as

the server cannot distinguish previously added or deleted keywords, since the results are returned in

encrypted form. The procedures of the scheme are depicted in Figure2. The algorithms that

illustrate the forward and backward evolution of states in the update and search protocols are also

provided below:

Fig. 2. The query for the keyword 𝒘 from our system

This innovative design ensures secure, efficient, and privacy-preserving searchable encryption,

making it a robust solution for protecting sensitive data in dynamic environments.

Setup protocol: In the setup protocol, the data owner generates 𝑀𝑆𝐾 , 𝐾𝑐𝑜𝑢𝑛𝑡 , and 𝑆𝑐𝑜𝑢𝑛𝑡

according to the specifications outlined in the setup method. 𝑀𝑆𝐾 represents a 𝜆 -bit long-term

key designated for encrypting keywords. 𝐾𝑐𝑜𝑢𝑛𝑡 and 𝑆𝑐𝑜𝑢𝑛𝑡 contain empty maps representing

local databases, including search counters and distinct keyword counters, which will record

states on the blockchain network side. The inclusion of the long-term key ks prevents the server

from autonomously generating tokens. Additionally, the data owner initializes two empty maps:

𝑃𝑟𝑒𝑠, intended for storing plaintext search results (𝑎𝑐𝑐𝑒𝑠𝑠 𝑝𝑎𝑡𝑡𝑒𝑟𝑛), and 𝐸𝑖𝑑𝑥, which holds the

encrypted index. These maps are stored on the server.

𝑺𝒆𝒕𝒖𝒑(𝜆, ⊥; ⊥; ⊥)

Data Owner:

1: 𝑀𝑆𝐾
$

← {0,1}𝜆 // store in owner

2:
𝐾𝑐𝑜𝑢𝑛𝑡 ← 𝑒𝑚𝑝𝑡𝑦 // send to the blockchain

𝑆𝑐𝑜𝑢𝑛𝑡 ← 𝑒𝑚𝑝𝑡𝑦 // send to the blockchain

3:
𝐸𝑖𝑑𝑥 ← 𝑒𝑚𝑝𝑡𝑦 𝑚𝑎𝑝 // send to server

𝑃𝑟𝑒𝑠 ← 𝑒𝑚𝑝𝑡𝑦 𝑚𝑎𝑝 // send to server

Update data: When updating a file that contains a keyword 𝑤w with identifier 𝑖𝑛𝑑, the data

owner follows a systematic process to ensure both efficiency and security. Initially, the data

owner retrieves the previous state 𝑠𝑡𝑐 from the local state store on the blockchain side using the

mappings (S← 𝑆𝑐𝑜𝑢𝑛𝑡[𝑏𝑤𝑖
] , C← 𝐾𝑐𝑜𝑢𝑛𝑡[𝑏𝑤𝑖

]) (lines 1-3 in the Update algorithm). Next, the

data owner generates a random ephemeral key 𝐾𝐶

$
← {0,1}𝜆 and advances the state to the

current state 𝑆𝐶 using a pseudorandom permutation (lines 7-9). The local data retrieval location

Salim S. B. , Zaid A. A.

312

𝑏𝑤𝑖
 is generated using the private secret key 𝑀𝑆𝐾 and the hash function H1 , following the

function 𝑏𝑤𝑖
← F(𝑀𝑆𝐾, H1(w)) (line 2). To maintain backward privacy, a secret key 𝑠𝑘𝐶 ←

𝐹(𝑀𝑆𝐾, 𝑤||𝐶) is renewed with each update query. This renewal obscures the contents of the

encrypted value, preventing the server from detecting additions or deletions during the

operation 𝑜𝑝 (line 9). The ephemeral key 𝑆𝐶 is not stored on the owner or blockchain side but is

embedded in the encrypted index entry 𝐸𝑣𝑎𝑙𝑢 that will be stored on the server side (line 10).

The owner also generates a reference 𝑙𝑜𝑐 from the current state and the keyword (line 11). The

pair (𝑙𝑜𝑐 and 𝐸𝑣𝑎𝑙𝑢) is sent to the server, which then updates its map 𝐸𝑖𝑑𝑥 accordingly (line 12).

Finally, the local maps (𝐾𝑐𝑜𝑢𝑛𝑡 and 𝑆𝑐𝑜𝑢𝑛𝑡) on the blockchain side are updated to reflect these

changes (line 13). This meticulous process ensures the integrity and privacy of the data during

updates.

𝐔𝐩𝐝𝐚𝐭𝐞(𝑀𝑆𝐾, ind, doc, op; 𝐾𝑐𝑜𝑢𝑛𝑡, 𝑆𝑐𝑜𝑢𝑛𝑡; E𝑖𝑑𝑥)

Data Owner:

1: 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 |𝑑𝑜𝑐|
2: 𝑏𝑤𝑖

← F(𝑀𝑆𝐾, H1(w))

 Retrieve from the blockchain network

3: S← 𝑆𝑐𝑜𝑢𝑛𝑡[𝑏𝑤𝑖
] , C← 𝐾𝑐𝑜𝑢𝑛𝑡[𝑏𝑤𝑖

]

4: 𝐢𝐟 (𝑆 , 𝐾) = ⊥ then

5:
 C← 0, S

$
← {0,1}𝜆

6: C← 𝐶 + 1

7:
 𝐾𝐶

$
← {0,1}𝜆

8: 𝑆𝐶 ← 𝐺(𝐾𝐶 , 𝑆𝐶−1||𝐶)

9: 𝑠𝑘𝐶 ← 𝐹(𝑀𝑆𝐾, 𝑤||𝐶)

10: 𝐸𝑣𝑎𝑙𝑢 ← (𝐺(𝑠𝑘𝐶 , (𝑜𝑝 ‖𝑖𝑛𝑑))|| 𝐾𝐶) ⊕ 𝐻2(𝑏𝑤𝑖
||𝑆𝐶||𝐶)

11: 𝑙𝑜𝑐 ← 𝐻3(𝑏𝑤𝑖
||𝑆𝐶||𝐶)

12: Update 𝐸𝑖𝑑𝑥[𝑙𝑜𝑐] ← 𝐸𝑣𝑎𝑙𝑢 in server

13:
 Update 𝐾𝑐𝑜𝑢𝑛𝑡[𝑏𝑤𝑖

] ← 𝐶 in blockchain

 Update 𝑆𝑐𝑜𝑢𝑛𝑡 [𝑏𝑤𝑖
] ← 𝑆 in blockchain

Search Data: To search a keyword 𝑤, the data owner follows a systematic algorithm. Initially,

the data owner retrieves the current state 𝑆 and 𝐶 from the local database stored on the

blockchain, denoted as S← 𝑆𝑐𝑜𝑢𝑛𝑡[𝑏𝑤𝑖
] , 𝐶 ← 𝐾𝑐𝑜𝑢𝑛𝑡[𝑏𝑤𝑖

] (lines 1-2 in the search algorithm).

The first step involves verifying whether the keyword 𝑤 exists in the encrypted index by

examining the retrieved values from the blockchain. If the keyword is not found in the

encrypted index, the process terminates (lines 3-4). Subsequently, the algorithm computes the

search trapdoor and sends a search token, which includes the encrypted keyword and the

current state (𝑆 , 𝐶 , 𝑏𝑤), to the server (lines 5-6). Based on the current state 𝑆 , the server

generates all previous states 𝑆𝑖−1 and identifies the corresponding update sequence. Within the

algorithm's for-loop, the server recovers the ephemeral key 𝐾𝑖 (line 10), which is then utilized

to retrieve the previous state 𝑆𝑖−1 ← 𝐺−1(𝐾𝑖, 𝑆𝑖||𝑖) (line 13). The server conducts a backward

search through the update sequence using the state 𝑆𝑖. The encrypted values associated with the

keyword are compiled into a set 𝐸𝑟𝑒𝑠 (line 12). To mitigate access pattern leakage and optimize

storage efficiency, these results are deleted from the server after extraction (line 11).

Upon retrieving all encrypted values associated with the keyword and updating the encrypted

index, the encrypted results 𝐸𝑟𝑒𝑠 are transmitted to the data owner. Given that both "add" and

"delete" operations are permissible, the data owner must ensure that deleted files are excluded

from the result set. This is achieved by maintaining a set 𝑃𝑟𝑒𝑠, which contains the identifiers of

deleted files throughout the search process. When a delete update is encountered, the server

inserts the file identifier 𝑖𝑛𝑑 into 𝑃𝑟𝑒𝑠 . Conversely, if an add update is detected and 𝑖𝑛𝑑 is

present in 𝑃𝑟𝑒𝑠 , the data owner removes 𝑖𝑛𝑑 from 𝑃𝑟𝑒𝑠 . This meticulous filtering process

Performing Encrypted Cloud... J. Basrah Res. (Sci.) 50(1), 304 (2024).

313

ensures that only the added results are retained. The data owner performs this filtering to ensure

the server remains unaware of which data was subsequently deleted or added, thus maintaining

backward privacy (lines 14-21). After completing the search, the data owner updates the local

data for the keyword to a null value ⊥ on the blockchain, ensuring the integrity and

confidentiality of the search process.

𝑺𝒆𝒂𝒓𝒄𝒉(𝑀𝑆𝐾, 𝑤, 𝑜𝑝; 𝐾𝑐𝑜𝑢𝑛𝑡, 𝑆𝑐𝑜𝑢𝑛𝑡; 𝐸𝑖𝑑𝑥 , 𝑃𝑟𝑒𝑠)

Data Owner:

1: 𝑏𝑤 ← F(𝑀𝑆𝐾, H1(w))

Retrieve from the blockchain network

2: S← 𝑆𝑐𝑜𝑢𝑛𝑡[𝑏𝑤𝑖
] , C← 𝐾𝑐𝑜𝑢𝑛𝑡[𝑏𝑤𝑖

]

3: 𝐢𝐟 (𝑆 , 𝐶) = ⊥ then

4: If the keyword 𝑤 not inserted then return ∅ ;

5: 𝒆𝒍𝒔𝒆

6: Send (𝑆 , 𝐶 , 𝑏𝑤) to server

Server:

7: 𝐸𝑟𝑒𝑠 ← {}

8: 𝑓𝑜𝑟 𝑖 = 𝐶 𝑡𝑜 1 𝑑𝑜

9: 𝑙𝑜𝑐 ← 𝐻3(𝑏𝑤||𝑆𝑖||𝑖)

10: (𝐺(𝑠𝑘𝐶 , (𝑜𝑝 ‖𝑖𝑛𝑑))|| 𝐾𝑖) ← 𝐸𝑖𝑑𝑥[𝑙𝑜𝑐] ⊕ 𝐻2(𝑏𝑤||𝑆𝑖||𝑖)

11: Delete 𝐸𝑖𝑑𝑥[𝑙𝑜𝑐]
12: 𝐸𝑟𝑒𝑠 ← 𝐸𝑟𝑒𝑠 ∪ 𝐺(𝑠𝑘𝐶 , (𝑜𝑝 ‖𝑖𝑛𝑑))

13: 𝑆𝑖−1 ← 𝐺−1(𝐾𝑖, 𝑆𝑖||𝑖)

Send 𝐸𝑟𝑒𝑠 to owner

Data Owner:

14: 𝑃𝑟𝑒𝑠 ← {}

15: 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 | 𝐸𝑟𝑒𝑠 | 𝑑𝑜

16: 𝑠𝑘𝑖 ← 𝐹(𝑀𝑆𝐾, 𝑤||𝑖)

17: (op ‖ind) ← 𝐺−1(𝑠𝑘𝑖,𝐸𝑟𝑒𝑠)

18: 𝒊𝒇 𝑜𝑝 = "𝑎𝑑𝑑" 𝑡ℎ𝑒𝑛

19: 𝑃𝑟𝑒𝑠 ← 𝑃𝑟𝑒𝑠 ∪ 𝑖𝑛𝑑

20: else

21: 𝑃𝑟𝑒𝑠 ← 𝑃𝑟𝑒𝑠 − 𝑖𝑛𝑑

22:
 Update 𝐾𝑐𝑜𝑢𝑛𝑡[𝑏𝑤𝑖

] ← ⊥ in Blockchain

 Update 𝑆𝑐𝑜𝑢𝑛𝑡 [𝑏𝑤𝑖
] ← ⊥ in Blockchain

5. Experimental analysis

 A small Ethereum network was constructed locally to experiment with the distinct

performance features and security of our proposed system. The only difference between the

simulated network and the actual Ethereum environment is that the mining block time is set to 0.

With this approach, we can concentrate on the smart contract's search functionality even amidst

Ethereum's complex network environments and laborious mining procedures, which include

broadcast and transaction mining delays. We assessed the search time by returning a predefined

number of matching documents, primarily evaluating the effectiveness of the search and update

phases. To determine the updating cost, we added and deleted a set number of files and

measured the associated time and gas consumption. We compared our proposed system with

existing DSSE schemes, specifically PPSE [38] and Jiang [37] approaches, which operate in

similar blockchain environments. The hardware setup consists of an Intel (R) Core (TM) i5-

10400F CPU @2.90 GHz processor with 8 GB of RAM, and the environment is based on a

Windows 11 64-bit operating system, x64-based processor. Our proposed system utilizes the

original dataset sourced from the Enron email[41] dataset, from which a subset is extracted for

testing purposes. During the experiment, the smart contract is implemented using the Solidity

language, while Python is employed as the language for interacting with the smart contract.

Salim S. B. , Zaid A. A.

314

Additionally, we provide the 𝑃𝑅𝐹 𝐹 implemented with AES-128/256 and 𝑃𝑅𝑃 𝐺 implemented

with AES-128/128. The utilization of stronger hash functions such as SHA-3 does not

significantly impact the efficiency of our scheme, as hashing is not the primary cornerstone of

our design. Our suggested scheme simulation experiment assesses the search time by returning

a set number of matching documents, primarily testing the effectiveness of the search and

updating phases. A set number of files are added and deleted to determine the updating cost.

The PPSE[38], and Jiang[37] of the same backward private level and the same blockchain

environment, which also stores indexes and documents independently, are compared with our

suggested approach. It's important to note that the results for the comparison schemes were

obtained from the article[38]. Our system mitigates side-channel attacks by using unique

ephemeral keys for each state transition, ensuring timing patterns don't reveal encrypted data. It

maintains consistent query response times, preventing attackers from inferring data size based

on processing speed. Additionally, pseudorandom permutations in state transitions add further

obfuscation, protecting against information leakage through observable patterns. This structure

ensures a robust defense against side-channel vulnerabilities.

We assessed the search time by returning a predefined number of matching documents,

primarily evaluating the effectiveness of the search and update phases. To determine the

updating cost, we added and deleted a set number of files and measured the associated time and

gas consumption. We compared our proposed system with existing DSSE schemes, specifically

PPSE and Jiang's approach, which operate in similar blockchain environments. The following is

an analysis of the outcomes.

Fig.3. updates gas consumption

The number of matched documents is set from 100 to 500 for searching to demonstrate the

basic method. The growing trend of search time as the number of matched documents varies is

seen in Figure 5. After carrying out each strategy thirty times, we average the results. In our

scheme, a comparison with others reveals that as the number of matched documents increases,

there is a slight decrease in the efficiency of the search algorithm in terms of time cost. In

contrast, for other schemes, the increase is linear and substantial with the rise in the number of

retrieved documents. The amount of data to be retrieved and the duration of the search is

increasing with the size of the dataset in the cloud environment. The loading time increases

with the number, resulting in worse algorithm execution efficiency compared to the cloud

environment. Figure 4, however, shows that our scheme's query efficiency is substantially

quicker than that of the other schemes in the cloud environment. Our system is quicker than the

asymmetric encryption employed in comparable schemes since it is based on symmetric

primitive encryption technologies. Furthermore, compared to research on the identical

blockchain environment, the security in our scheme is noticeably greater than [37]. Query

0

1

2

3

4

5

6

7

20 40 60 80 100

G
ag

 u
sa

ge
 (

*
1

0
^6

)

Number of pairs(w,id)

PPSE(add)
PPSE(delete)
Jiang(add)
Jiang(delete)
our scheme (update)

Performing Encrypted Cloud... J. Basrah Res. (Sci.) 50(1), 304 (2024).

315

efficiency is an advantage. To protect data, search functions on the blockchain are carried out

using smart contracts.

Fig. 4. Update addition time

Fig. 5. Update delete time

The usage and time expenses that vary depending on how many files are added or removed are

shown in Figures 3–5. The number of files added and removed causes a linear rise in both the

execution time and gas consumption as in Figure 3 (gas is a unit of measurement used to

quantify the amount of computing labor required to complete an action on the network

blockchain). The (keyword, identifier) inverted index pairs in the file are raised from 20 to 100

for testing by choosing files of varying sizes. Figure 4 and Figure 5 demonstrate that, in the

cloud context, the update efficiency of the Jiang [37] and PPSE[38] systems are much less than

our method. In the same blockchain context, our system design not only offers clear

performance advantages in updates but also achieves a higher level of backward privacy

compared to Jiang [37], which does not ensure backward privacy. The graphs show that for

comparison systems, the time growth is substantially linear as the result size increases, but in

our system, the cost of time growth is much less due to changes in the database size. This is not

surprising, as our system uses symmetric encryption to ensure forward and backward privacy,

whereas Jiang [37] and PPSE [38] approaches rely on one-way trapdoor permutations (e.g.

0

10

20

30

40

50

2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

A
D

D
 T

IM
E(

S)

NUMBER OF PAIRS(W,ID)

PPSE

Jiang

our scheme

0

5

10

15

20

25

2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

D
EL

ET
E

TI
M

E(
S)

NUMBER OF PAIRS(W,ID)

PPSE

Jiang

our scheme

Salim S. B. , Zaid A. A.

316

implemented with RSA). All changes and deletions made to the blockchain are handled via

smart contracts, which are inexpensive, decentralized, and have a high timeliness.

The experimental results demonstrate the effectiveness and efficiency of our proposed DSSE

framework, particularly in terms of search and update operations. By leveraging symmetric

encryption and optimizing storage efficiency, our system achieves superior performance

without compromising security, making it a robust solution for protecting sensitive data in

dynamic environments. Quickly retrieves data when searching and updating requests compared

to other systems.

Fig. 6. Query search time.

In conclusion, the proposed scheme achieves the following features.
Security

DSSE framework provides strong security against attacks and ensures data privacy. It also

includes forward and backward privacy to prevent the server from learning about the new or

deleted documents. We secure secret keys by providing ephemeral keys and utilizing secure

encryption ensuring data cannot be read by unauthorized parties.

Performance

Our scheme is tested for efficient performance on a local Ethereum network. The gas

consumption for the updates is low, even though search times are far better than the other

schemes. Note that this serves as an optimization under the hood (symmetric encryption is

lighter than asymmetric).

Scalability

Technically, our DSSE scheme can manage large data sets well. Experimental results

demonstrate that the execution time and gas consumption increase in linear form according to

the number of files, guaranteeing performance efficiency.

Privacy

Our framework protects both data owner and client privacy. Data is stored encrypted, and

pseudorandom permutations ensure the server cannot infer information. The search process

maintains confidentiality, providing forward and backward privacy to safeguard data operations.

6. Summary

In this paper, we emphasize the practical application of Dynamic Searchable Symmetric

Encryption (DSSE) and introduce the first efficient framework that maintains constant client

storage Our suggestion is a novel dynamic SSE technique that addresses both kinds of privacy

0

5

10

15

20

25

30

35

1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0

SE
A

R
C

H
 T

IM
E

(S
)

NUMBER OF PAIRS(W,ID)

PPSE

Jiang

our scheme

Performing Encrypted Cloud... J. Basrah Res. (Sci.) 50(1), 304 (2024).

317

without requiring complex asymmetric procedures. With this approach, we may surpass previous

techniques! Our strategy operates in a three-party context. The data owner, who manages key

management and data encryption, is the first party. Serving as a server, the second party has a

large amount of storage and powerful processing to handle encrypted data. The third-party

consists of blockchain nodes that manage local database storage, ensuring data integrity and

security. To enhance efficiency, we propose to use an encrypted inverted index on the server to

map keywords to their corresponding document IDs. This approach greatly reduces client-side

calculations, limiting the server's role primarily to storage tasks rather than task processing. All

calculations in our system are performed server-side.As a result, the cost of generating a search

token, referred to as a trapdoor, remains constant regardless of the frequency of keyword updates.

This design ensures that our system is compatible with smart devices, as there is no need for

local data storage or intensive computations on these devices. Thus, our framwork is suitable for

a wide range of service providers and can be adapted as a global model. This versatility makes

our solution applicable across various critical systems, enhancing its practical utility and

expanding its potential impact.

7. Future Work
While demonstrating that forward and backward privacy can be achieved with high efficiency

is a positive step, further research is needed before SSE methods can be employed in scenarios

where information leakage is undesirable. This ongoing work will help ensure the robustness

and applicability of SSE in such sensitive contexts.

8. References

[1] M. A. Al Sibahee, A. I. Abdulsada, Z. A. Abduljabbar, J. Ma, V. O. Nyangaresi, and S. M.

Umran, “Lightweight, Secure, Similar-Document Retrieval over Encrypted Data,” Applied

Sciences, vol. 11, no. 24, p. 12040, 2021, Doi: https://doi.org/10.3390/app112412040

[2] Z. A. Abduljabbar et al., “SEPIM: Secure and efficient private image matching,” Applied

Sciences, vol. 6, no. 8, p. 213, 2016. Doi: https://doi.org/10.3390/app6080213

[3] M. A. Al Sibahee et al., “Lightweight secure message delivery for E2E S2S communication

in the IoT-cloud system,” IEEE Access, vol. 8, pp. 218331–218347, 2020, Doi:

10.1109/ACCESS.2020.3041809

[4] M. A. Al Sibahee et al., “Efficient encrypted image retrieval in IoT-cloud with multi-user

authentication,” Int J Distrib Sens Netw, vol. 14, no. 2, p. 1550147718761814, 2018,

Accessed: Jun. 18, 2024. Doi: https://doi.org/10.1177/1550147718761814

[5] Z. A. Abduljabbar, A. Ibrahim, M. A. Hussain, Z. A. Hussien, M. A. Al Sibahee, and S. Lu,

“EEIRI: Efficient encrypted image retrieval in IoT-cloud,” KSII Transactions on Internet

and Information Systems (TIIS), vol. 13, no. 11, pp. 5692–5716, 2019, Accessed: Jun. 18,

2024. Doi: https://doi.org/10.3837/tiis.2019.11.023

[6] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse attacks against searchable

encryption,” in Proceedings of the 22nd ACM SIGSAC conference on computer and

communications security, 2015, pp. 668–679. Accessed: Jun. 18, 2024. Doi:

https://doi.org/10.1145/2810103.2813700

[7] Y. Zhang, J. Katz, and C. Papamanthou, “All your queries are belong to us: The power of

file-injection attacks on searchable encryption,” Cryptology ePrint Archive, 2016.

[8] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable symmetric encryption:

improved definitions and efficient constructions,” in Proceedings of the 13th ACM

conference on Computer and communications security, 2006, pp. 79–88. Accessed: Jun. 18,

2024. Doi: https://doi.org/10.1145/1180405.1180417

[9] E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic searchable encryption with

small leakage,” Cryptology ePrint Archive, 2013, Accessed: Jun. 18, 2024. Doi:

https://ia.cr/2013/832

Salim S. B. , Zaid A. A.

318

[10] R. Bost, “∑ oφoς: Forward secure searchable encryption,” in Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security, 2016, pp. 1143–1154.

Accessed: Jun. 18, 2024. Doi: https://doi.org/10.1145/2976749.2978303

[11] D. Cash et al., “Dynamic searchable encryption in very-large databases: Data structures and

implementation,” Cryptology ePrint Archive, 2014, Accessed: Jun. 18, 2024. Doi:

10.14722/ndss.2014.23264

[12] S. S. Bilbul and A. I. Abdulsada, “Backward Private Searchable Symmetric Encryption

with Improved Locality.,” Iraqi Journal for Electrical & Electronic Engineering, vol. 17,

no. 2, 2021, Accessed: Jun. 18, 2024. Doi: 10.37917/ijeee.17.2.3

[13] S. S. Bulbul and A. I. Abdulsada, “Security proof for backward searchable encryption

scheme,” Journal of Basrah Researches (Sciences), vol. 47, no. 1, 2021.

[14] S. S. Bulbul et al., “A provably lightweight and secure DSSE scheme, with a constant

storage cost for a smart device client,” PLoS One, vol. 19, no. 4, p. e0301277, 2024, Doi:

https://doi.org/10.1371/journal.pone.0301277

[15] S. S. Bulbul, Z. A. Abduljabbar, D. F. Najem, V. O. Nyangaresi, J. Ma, and A. J. Y.

Aldarwish, “Fast Multi-User Searchable Encryption with Forward and Backward Private

Access Control,” Journal of Sensor and Actuator Networks, vol. 13, no. 1, p. 12, 2024, Doi:

https://doi.org/10.3390/jsan13010012

[16] S. Kamara and C. Papamanthou, “Parallel and dynamic searchable symmetric encryption,”

in International conference on financial cryptography and data security, Springer, 2013, pp.

258–274. Doi: 10.1007/978-3-642-39884-1_22

[17] S. Kamara and T. Moataz, “Boolean searchable symmetric encryption with worst-case sub-

linear complexity,” in Advances in Cryptology–EUROCRYPT 2017: 36th Annual

International Conference on the Theory and Applications of Cryptographic Techniques,

Paris, France, April 30–May 4, 2017, Proceedings, Part III 36, Springer, 2017, pp. 94–124.

Doi: 10.1007/978-3-319-56617-7_4

[18] R. Bost, B. Minaud, and O. Ohrimenko, “Forward and backward private searchable

encryption from constrained cryptographic primitives,” in Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications Security, 2017, pp. 1465–1482.

Doi: https://doi.org/10.1145/3133956.3133980

[19] Y.-C. Chang and M. Mitzenmacher, “Privacy preserving keyword searches on remote

encrypted data,” in International conference on applied cryptography and network security,

Springer, 2005, pp. 442–455. Doi: 10.1007/11496137_30

[20] S. Garg, P. Mohassel, and C. Papamanthou, “TWORAM: efficient oblivious RAM in two

rounds with applications to searchable encryption,” in Annual International Cryptology

Conference, Springer, 2016, pp. 563–592. Doi: 10.1007/978-3-662-53015-3_20

[21] X. Song, C. Dong, D. Yuan, Q. Xu, and M. Zhao, “Forward private searchable symmetric

encryption with optimized I/O efficiency,” IEEE Trans Dependable Secure Comput, vol. 17,

no. 5, pp. 912–927, 2018, Doi: 10.1109/TDSC.2018.2822294

[22] M. A. Al Sibahee, C. Luo, J. Zhang, Y. Huang, and Z. A. Abduljabbar, “Dynamic

Searchable Scheme with Forward Privacy for Encrypted Document Similarity,” in 2023

IEEE 22nd International Conference on Trust, Security and Privacy in Computing and

Communications (TrustCom), IEEE, 2023, pp. 1653–1660. Doi:

10.1109/TrustCom60117.2023.00225

[23] K. Fan, S. Wang, Y. Ren, H. Li, and Y. Yang, “Medblock: Efficient and secure medical

data sharing via blockchain,” J Med Syst, vol. 42, pp. 1–11, 2018, Doi: 10.1007/s10916-

018-0993-7

[24] J. Sun, X. Yao, S. Wang, and Y. Wu, “Blockchain-based secure storage and access scheme

for electronic medical records in IPFS,” IEEE access, vol. 8, pp. 59389–59401, 2020, Doi:

10.1109/ACCESS.2020.2982964

[25] R. H. Hylock and X. Zeng, “A blockchain framework for patient-centered health records

and exchange (HealthChain): evaluation and proof-of-concept study,” J Med Internet Res,

vol. 21, no. 8, p. e13592, 2019, Doi: 10.2196/13592

Performing Encrypted Cloud... J. Basrah Res. (Sci.) 50(1), 304 (2024).

319

[26] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches on encrypted data,”

in Proceeding 2000 IEEE symposium on security and privacy. S&P 2000, IEEE, 2000, pp.

44–55. Doi:10.1109/SECPRI.2000.848445

[27] M. Chase and S. Kamara, “Structured encryption and controlled disclosure,” in

International conference on the theory and application of cryptology and information

security, Springer, 2010, pp. 577–594. Doi: 10.1007/978-3-642-17373-8_33

[28] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, and M. Steiner, “Highly-scalable

searchable symmetric encryption with support for boolean queries,” in Advances in

Cryptology–CRYPTO 2013: 33rd Annual Cryptology Conference, Santa Barbara, CA, USA,

August 18-22, 2013. Proceedings, Part I, Springer, 2013, pp. 353–373. Doi: 10.1007/978-3-

642-40041-4_20

[29] A. Bossuat, R. Bost, P.-A. Fouque, B. Minaud, and M. Reichle, “SSE and SSD: page-

efficient searchable symmetric encryption,” in Annual International Cryptology Conference,

Springer, 2021, pp. 157–184. Doi: 10.1007/978-3-030-84252-9_6

[30] S. Hu, C. Cai, Q. Wang, C. Wang, X. Luo, and K. Ren, “Searching an encrypted cloud

meets blockchain: A decentralized, reliable and fair realization,” in IEEE INFOCOM 2018-

IEEE Conference on Computer Communications, IEEE, 2018, pp. 792–800. Doi:

10.1109/INFOCOM.2018.8485890

[31] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable symmetric encryption,”

in Proceedings of the 2012 ACM conference on Computer and communications security,

2012, pp. 965–976. Doi: 10.1145/2382196.2382298

[32] E. Stefanov et al., “Path ORAM: an extremely simple oblivious RAM protocol,” Journal of

the ACM (JACM), vol. 65, no. 4, pp. 1–26, 2018, Doi: 10.1145/2508859.2516660

[33] M. Naveed, “The fallacy of composition of oblivious ram and searchable encryption,”

Cryptology ePrint Archive, 2015, Doi: https://eprint.iacr.org/2015/668.pdf

[34] J. Ghareh Chamani, D. Papadopoulos, C. Papamanthou, and R. Jalili, “New constructions

for forward and backward private symmetric searchable encryption,” in Proceedings of the

2018 ACM SIGSAC Conference on Computer and Communications Security, 2018, pp.

1038–1055. Doi: 10.1145/3243734.3243833

[35] I. Demertzis, J. G. Chamani, D. Papadopoulos, and C. Papamanthou, “Dynamic searchable

encryption with small client storage,” Cryptology ePrint Archive, 2019, Doi:

10.14722/ndss.2020.24423

[36] K. He, J. Chen, Q. Zhou, R. Du, and Y. Xiang, “Secure dynamic searchable symmetric

encryption with constant client storage cost,” IEEE Transactions on Information Forensics

and Security, vol. 16, pp. 1538–1549, 2020, Doi: 10.1109/TIFS.2020.3033412

[37] S. Jiang, J. Liu, L. Wang, and S.-M. Yoo, “Verifiable search meets blockchain: A privacy-

preserving framework for outsourced encrypted data,” in ICC 2019-2019 IEEE

International Conference on Communications (ICC), IEEE, 2019, pp. 1–6. Doi:

10.1109/ICC.2019.8761146

[38] R. Du, C. Ma, and M. Li, “Privacy-preserving searchable encryption scheme based on

public and private blockchains,” Tsinghua Sci Technol, vol. 28, no. 1, pp. 13–26, 2022, Doi:

10.26599/tst.2021.9010070

[39] E. J. De Aguiar, B. S. Faiçal, B. Krishnamachari, and J. Ueyama, “A survey of blockchain-

based strategies for healthcare,” ACM Computing Surveys (CSUR), vol. 53, no. 2, pp. 1–27,

2020, Doi: 10.1145/3376915

[40] Q. Song, Z. Liu, J. Cao, K. Sun, Q. Li, and C. Wang, “SAP-SSE: Protecting search patterns

and access patterns in searchable symmetric encryption,” IEEE Transactions on

Information Forensics and Security, vol. 16, pp. 1795–1809, 2020, Doi:

10.1109/TIFS.2020.3042058

[41] Enron company, “Email Dataset.” Doi: https://www.cs.cmu.edu/~enron/, Accessed: Jun.

21, 2024

https://www.cs.cmu.edu/~enron/

 Journal of Basrah Researches (Sciences) 50(1), 304 (2024)

 DOI: https://doi.org/10.56714/bjrs.50.1.24

*Corresponding author email : zaid.ameen@uobasrah.edu.iq

 ©2022 College of Education for Pure Science, University of

Basrah. This is an Open Access Article Under the CC by

License the CC BY 4.0 license.

 ISSN: 1817-2695 (Print); 2411-524X (Online)

Online at: https://jou.jobrs.edu.iq

Citation: Salim S. B. , Zaid A.

A., J. Basrah Res. (Sci.) 50(1),

304 (2024).
DOI:https://doi.org/10.56714/bjrs.5

0.1.24

 ابحاث البصرة)العلميات(الملخص باللغة العربية لمجلة نموذج

 ،*2زيد أمين عبد الجبار ،1م صباح بلبل الس

 ، العراق 61004، المديرية العامة للتربية، البصرة، وزارة التربية، البصرة1

 ، العراق 61004قسم علوم الحاسوب، كلية التربية للعلوم الصرفة، جامعة البصرة، البصرة، 2

 معلومات البحث الملخص

يمكن لأصحاب البيانات الذين يسعون إلى تحسين قوة المعالجة أو التخزين أو النطاق الترددي

جديدة تحديات يطرح التحول هذا فإن ذلك، ومع السحابية. الحوسبة خدمات من الاستفادة

(، الذي يجمع بين تقنيات SEتتعلق بالخصوصية وأمن البيانات. يعالج التشفير القابل للبحث)

السماح خلال من البيانات(مستخدمي خصوصية)انتهاك القضايا هذه والبحث، التشفير

على الرئيسية. الكلمات باستخدام والبحث سحابي خادم إلى ونقلها المستخدم بيانات بتشفير

أمان بشأن مخاوف الأخيرة الواقعية الهجمات من العديد أثارت فوائده، من التشفير الرغم

للبحث. من المرجح أن يصبح ضمان الخصوصية الأمامية والخلفية متطلباً قياسياً في القابل

أنظمة البدائيات SEتطوير حصرياً يستخدم نظامًا نقترح القضايا، هذه لمعالجة الجديدة.

إل المتماثلة، مما يحقق كفاءة اتصال عالية وخصوصية أمامية وخلفية. بالإضافة ى التشفيرية

اللاحقة التحديثات نتائج تحميل يتم لأنه المحسنة الإخراج / الإدخال كفاءة على نؤكد ذلك،

 SEفقط عند البحث. يتم تقليل الوقت المطلوب لاسترداد النتائج بشكل كبير مقارنة بأساليب

الحالية التي أظهرنا أن مخططنا يحقق كفاءة فائقة. علاوة على ذلك، من خلال دمج خدمات

مع الخدمات السحابية، قمنا بتطوير نظام تشفير ذكي قابل للبحث مناسب blockchain شبكة

التي أجريناها على شبكة الذكية خفيفة الوزن. في دراستنا ، وجدنا أن Ethereumللأجهزة

. تشير النتائج إلى أن Jiangو PPSEطريقتنا فعاّلة وآمنة، خاصة عند مقارنتها بأساليب مثل

تائج من حيث الأداء والخصوصية في بيئات سحابية ديناميكية، مما يجعله حلاً نظامنا يحقق ن

 لحماية المعلومات السرية.

 2024 ايار 16الاستلام

 2024حزيران 25القبول

 2024حزيران 30النشر

 المفتاحية الكلمات

كفاءة الإدخال/الإخراج، شبكة

blockchain ،الأدوات البدائية المتماثلة ،

(، الأمان SEالتشفير القابل للبحث)

 الخلفي، الأمان الأمامي.

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56714/bjrs.50.1.24
https://creativecommons.org/licenses/by/4.0/
https://jou.jobrs.edu.iq/
https://doi.org/10.56714/bjrs.50.1.
https://doi.org/10.56714/bjrs.50.1.

