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Data owners seeking to boost processing power, storage, or 

bandwidth can take advantage of cloud computing services. 

However, this shift poses new challenges related to privacy 

and data security. Searchable Encryption (SE), which 

combines encryption and search techniques, addresses these 

issues (violation of data users' privacy) by allowing user data 

to be encrypted, transmitted to a cloud server, and searched 

using keywords. Despite its benefits, several recent real-

world attacks have raised concerns about the security of 

searchable encryption. Ensuring forward and backward 

privacy is likely to become a standard requirement in the 

development of new SE systems. To address these issues, 

we propose a scheme that exclusively uses symmetric 

cryptographic primitives, achieving high communication 

efficiency and forward and backward privacy. In addition, 

we emphasize improved I/O efficiency because only the 

results of subsequent updates are loaded when searching. 

The time required to retrieve results is so significantly 

reduced compared to existing SE methods that we have 

shown that our scheme achieves superior efficiency. 

Moreover, by integrating blockchain network services with 

cloud services, we have developed a searchable intelligent 

cryptosystem suitable for lightweight smart devices. In our 

study conducted on the Ethereum network, we found our 

method to be both efficient and secure, especially when 

compared to methods such as PPSE and Jiang. The results 

indicate that our system delivers results in terms of 

performance and privacy within dynamic cloud 

environments making it a solution for protecting confidential 

information. 

K e y w o r d s :  

I/O efficiency, blockchain 

network, symmetric primitives, 

searchable encryption (SE), 

backward-security, forward-

security. 

 

1. Introduction 

The rapid development of cloud computing and mobile Internet is transforming people's 

lifestyles by aggregating substantial processing and storage power in the cloud. Service providers 
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offer on-demand services supporting a range of customized applications, benefiting customers with 

limited resources. Over the past decade, cloud computing has garnered significant interest from 

academia and industry due to its efficiency and low cost. However, the reliability of third-party 

service providers and the risks associated with storing unencrypted data are major concerns. 

Searchable encryption has emerged as a solution to these privacy risks. Users who employ 

searchable symmetric encryption (SSE) systems can upload their encrypted files to a distant server 

and search them without the need for decryption. The concept of storage-as-a-service, offered by 

providers like Google Cloud, Azure Storage, and Amazon Cloud, has increased the demand for 

searchable encryption. This technique allows users to store data on distant servers while 

maintaining privacy. Traditional encryption protects outsourced data but is not effective for 

searching encrypted content. Searchable encryption addresses this by creating an encrypted index 

sent to the cloud provider along with the encrypted data. Clients can then use encrypted search 

tokens to query this index. The server uses these tokens and the encrypted index to find matches, 

ensuring data privacy even with an untrusted server. 

Despite the development of various techniques  [1], [2], [3], [4], [5] for searching encrypted data, 

some are not suitable for deployment on smart devices in an IoT cloud environment due to their 

lack of lightweight characteristics and insufficient privacy maintenance. Since 2012, several attacks 

[6] and [7] have emerged, allowing untrusted servers to recover keywords from clients' search 

tokens, thereby revealing significant information about the encrypted data. These attacks exploit 

information leakage that occurs during the search and update phases of searchable encryption 

schemes. For instance, the deterministic creation of search tokens can lead to a 𝑠𝑒𝑎𝑟𝑐ℎ 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 [8] 

leakage, where the server identifies repeated search terms. 

Effective Searchable Symmetric Encryption (SSE) systems [9], [10], [11], [12], [13], [14], [15] 

permit some information leakage, such as 𝑎𝑐𝑐𝑒𝑠𝑠 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 [8]—the collection of documents 

containing the search term. Dynamic SSE techniques [16], [17] support update activities on the 

document collection. Zhang et al.'s [7] recent work demonstrated an adaptive attack that can fully 

disclose client requests by introducing a small number of files into the encrypted data storage. This 

attack's consequences are severe, as recovered keywords help the server decipher encrypted data 

and assist in further statistical attacks, underscoring the need for forward privacy. 

Forward privacy ensures newly added files cannot be linked to prior search terms, preventing such 

attacks. Stefanov et al.[9] emphasized that a secure SSE system must provide both forward and 

backward privacy. Forward privacy prevents file-injection[7] attacks, while backward privacy [18] 

ensures that deleted files remain private. Initial forward privacy schemes were introduced in earlier 

research [19], with subsequent studies [10], [20], [21], [22] continuing to address this issue. 

Backward privacy schemes aim to minimize leakage that occurs when a search query for a keyword 

can be linked to deleted documents. 

Emerging technologies like blockchain have facilitated frameworks allowing individuals to manage 

access to valuable private data, such as genetic and medical information. Numerous studies have 

explored using blockchain as an access control system, empowering individuals to control their 

health data. Recent research proposed methods for recording medical data access logs on 

blockchain's immutable ledger [23], [24], ensuring transparency and accountability. One significant 

challenge in healthcare is the inability of facilities to share data storage units, delaying patient 

treatment programs. Recent research [25] has developed token-based access mechanisms using 

blockchain smart contracts to address this, enabling efficient interoperability among health 

institutions and facilitating timely patient medical records exchange. This advancement aims to 

improve care coordination and expedite treatment processes. 

Contributions: In this work, we develop and implement a single-keyword Searchable Symmetric 

Encryption (SSE) dynamic technique that uses two rounds for search queries, providing both 

forward privacy and Type-II backward privacy. This approach ensures that the system remains 

secure against adaptive attacks while maintaining user privacy during file additions and deletions. 

Our approach offers the following attributes: 

1. Forward Privacy: To prevent the server from connecting later update tokens to earlier search 

tokens, new search tokens are created using a fresh key 𝑠𝑡. 
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2. Backward Privacy: The server is not informed of update operations (add or delete) while 

processing update queries, ensuring privacy during these operations. Our system achieves level 

two of backward privacy. 

3. Constant client storage: Our proposed work is the DSSE framework that satisfies Smart 

Device Client SDC requirements while being effective, safe, and having a constant storage cost 

on the client side. Furthermore, in terms of processing complexity throughout the search and 

update procedures, our strategy is both practically and conceptually close to ideal. Nonetheless, 

Table 1 illustrates how well it compares to earlier methods. 

4. Efficient Index Management: During a search, accessed items in the encrypted index are 

identified and removed, preventing the index from growing in size unnecessarily. 

5. Optimized Input/Output: Previous search results, which are already compromised, are stored 

on the server in plaintext. This avoids the overhead of re-encrypting them, allowing for efficient 

and continuous reading of plaintext results at the optimal location. 

The structure of the remainder of the paper is as follows: The most relevant SSE schemes are 

reviewed in Section 2. Section 3 provides the background and preliminary information necessary to 

understand our proposed plan. Section 4 outlines our proposed framework for secure data exchange, 

including implementation details. Section 5 presents the security evaluation, experimental setup, and 

performance analysis. Finally, Section 6 concludes the paper. 

2. Previews work 

Searchable Symmetric Encryption ( 𝑆𝑆𝐸 ) and construction with linear search time were first 

presented by Song et al. [26]. Later on, Curtmola et al. enhanced this by offering the first design 

with sub-linear search time by tracking a list of document IDs for each keyword using an inverted 

index [8]. The static scenario, in which the encrypted database is kept on the cloud server without 

any further changes, has also been an issue of later studies [27], [28], [29]. 

To facilitate database modifications, Dynamic Searchable Symmetric Encryption ( 𝐷𝑆𝑆𝐸 ) was 

created to allow users to add and delete keyword/document combinations in the database [19], [30]. 

Increasing the computational complexity of the search protocol has been one of the main areas of 

interest for many academics. The first DSSE method with sub-linear search time was presented by 

Kamara et al. [31], although their solution revealed the hashes of the modified texts' keywords. Later, 

Kamara and Papamanthou raised the space complexity in order to solve this problem [16]. 

Nevertheless, these techniques are still susceptible to more sophisticated assaults including leakage-

abuse attacks [6] and file injection attacks [7]. These assaults draw attention to the significance of 

forward security, which was explicitly established in [9] as an essential part of 𝐷𝑆𝑆𝐸. 

Despite Stefanov et al. [9] presented a forward-secure DSSE technique; their method has minimal 

computational complexity since it rebuilds the data structure at the update protocol level. Some 

systems, like Oblivious RAM[32], provide forward security using sophisticated cryptography; 

however, these methods are computationally expensive[20], [33]. Forward-secured schemes with 

theoretically optimal computing complexity exist but have certain limitations[10], [18]. 𝑆𝑜𝑝ℎ𝑜𝑠, for 

instance, creates search tokens using an inverted index and forwards them to the server for further 

searching without revealing the actual terms[10]. 𝑆𝑜𝑝ℎ𝑜𝑠  establishes a link between the search 

tokens and update tokens using trapdoor permutation, offering better theoretical processing 

complexity than[33]. However, since the trapdoor permutation relies on public-key primitives, 

𝑆𝑜𝑝ℎ𝑜𝑠 is inefficient in practical use. An informal mention of backward security can be found in [9], 

followed by the formal definition and structures providing this attribute provided by Bost et al.[18] . 

The systems Janus and 𝐷𝑖𝑎𝑛𝑎del , as described in[18], encounter inefficiencies with puncturable 

encryption and restrictions on keyword/document pairings, respectively. Subsequently, Chamani et 

al. [34] presented three strategies. Among them, Mitra requires two-round communication but 

achieves optimal computational and communication complexity. Conversely, the other two 

strategies trade off compute and transmission costs for backward security. 
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Our proposed DSSE framework addresses the weaknesses identified in previous works by ensuring 

both forward and backward privacy through the use of symmetric key operations, thereby enhancing 

performance and security. The system eliminates the need for public key operations, reducing 

computational overhead and making it suitable for use in resource-constrained environments. 

Additionally, our approach maintains constant client storage costs, which is a significant 

improvement over previous methods that often require substantial storage for maintaining encrypted 

indices and states. 

Utilizing a three-party model comprising the data owner, the server with the encrypted database, and 

blockchain nodes housing local databases it lessens the computational load and storage cost on the 

client, our system guarantees data integrity and security. By generating different encrypted values 

for the same keyword with each update query. This architecture renders our framework suitable for 

various sensitive systems, thereby amplifying its practical value and widening its potential influence. 

 

Table 1. compares many different DSSE schemes. 

 

Scheme 
Computation cost Forward 

Security 

Backward 

Security 

Owner 

Storage Search Update 

TWORAM[20] 𝑂̂(𝑎𝑤logN + log3N ) 𝑂̂(log2N) × × 𝑂(1) 

Mitra[34] 𝑂(𝑎𝑤) 𝑂(1) ✓ ✓ 𝑂(𝑚) 

𝑆𝐷𝑎[35] 𝑂(𝑎𝑤 + 𝑙𝑜𝑔𝑁) 𝑂(𝑙𝑜𝑔𝑁) ✓ ✓ 𝑂(𝑚) 

Sophos[18] 𝑂(𝑎𝑤) 𝑂(1) ✓ × 𝑂(𝑚) 

CLOSE-FB[36] 𝑂(𝑎𝑤 + 𝐶𝑜𝑛) 𝑂(𝐶𝑜𝑛) ✓ ✓ 𝑂(1) 

Jiang et al.[37] 𝑂(𝑠𝑤 × 𝑛𝑤 × 𝑜𝑤 × 𝑚) 𝑂(𝑙𝑜𝑔𝑁) ✓ × 𝑂(1) 

PPSE[38] 𝑂(𝑠𝑤 × 𝑛𝑤 × 𝑜𝑤) 𝑂(𝑙𝑜𝑔𝑁) ✓ ✓ 𝑂(1) 

Our scheme 𝑂(𝑜𝑤
′ ) 𝑂(1) ✓ ✓ 𝑂(1) 

The number of (keyword, identifier) mappings is denoted by 𝑁. The variable 𝑚 represents the 

number of distinct keywords 𝑤. Addition operations on a keyword 𝑤 are denoted by 𝑎𝑤, while 𝑑𝑤 

signifies the number of delete operations performed on 𝑤. The total number of updates on 𝑤 is 

represented by 𝑜𝑤, where 𝑜𝑤 = 𝑎𝑤 + 𝑑𝑤 . Since the last search, the number of updates is indicated 

by 𝑜𝑤
′ , and 𝑛𝑤  refers to the number of documents currently associated with 𝑤 . The term 

𝑂̂ encapsulates the log logN components. Satisfied is indicated by ✓, and unsatisfied by ×. As of the 

last search, the constant 𝐶𝑜𝑛  represents the total number of computations that can be performed on 

the hash function. 𝑠𝑤 reflects the count of searches executed for keyword 𝑤 
 

3. Preliminaries 

To understand our proposed framework, this section covers background information on blockchain, 

fully homomorphic encryption, cloud server architecture, and inverted index. The key concepts and 

notations used in this study are listed in the notation subsection. 

 

3.1. Notation   
In our system, 𝜆  serves as the indicator for the security parameter, while 𝐹  is employed as a 

pseudorandom function. 𝐺  functions as a pseudorandom permutation, with  𝐺−1 representing its 

inverse of pseudorandom permutation. The hash functions 𝐻1, 𝐻2 and 𝐻3 are utilized, each tailored 

to produce outputs suitable for 𝜆. The 𝐶𝑆𝑃, It is an abbreviation for Cloud Server Provider, plays a 

crucial role in our architecture. Additionally, the concatenation of strings 𝑎 and 𝑏 is denoted by 𝑎||𝑏. 

Within our system, 𝐷𝑜𝑐 refers to files containing a collection of keywords. 𝑷(𝑂; 𝐵; 𝑆) signifies a 

protocol engaging three key participants: the data owner, blockchain, and server. 𝐷𝑆𝑆𝐸, It is an 
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abbreviation for Dynamic Searchable Symmetric Encryption, is integral to our framework, and the 

XOR operation, represented by ⊕, forms a fundamental part of our cryptographic processes. 

 

3.2. Blockchain 
Blockchain, a distributed ledger of immutable and secure transactions, resides on nodes within a 

decentralized peer-to-peer (P2P) network. Nodes employ a consensus mechanism to validate a block 

containing all network transactions, which is compiled and appended to the blockchain[39]. This 

verified block is then linked to the most recent block using cryptographic hash pointers. A block 

consists of two main parts: the block header, containing metadata such as timestamp and hash values 

of previous and current blocks, and the block content, housing transaction data. There are three types 

of blockchain networks: consortium, private, and public, which find applications in various 

industries like healthcare and banking. These networks allow participants to conduct business 

without necessitating mutual trust. Smart contracts (SC) enforce the terms and conditions of 

agreements between parties. A smart contract is an immutable computer program recorded on a 

blockchain, automatically executing according to the predefined rules of a multiparty agreement. In 

this work, to enforce agreements between Data Owners (DOs) and Data Users (DUs), we establish a 

private blockchain network and deploy smart contracts on it. 

Blockchain technology is crucial in enhancing the robustness of our DSSE framework. It eliminates 

the need for trust by creating a secure, immutable record of all transactions. Despite these 

advantages, trust in the underlying system and the smart contract code remains essential. Vigilance 

is needed to detect and address any bugs or vulnerabilities that could pose security risks. 

Advantages of Our Framework: 

• Enhanced Security: Immutable records on the blockchain significantly boost security. 

• Efficient Data Management: Automated security policies via smart contracts streamline data 

management. 

• Decentralized Storage: Data is distributed across multiple nodes, ensuring reliability even 

during failures. 

Incorporating blockchain into our DSSE framework results in a secure, efficient, and resilient 

system. 

3.3. System model 

As shown in Figure 1, the parties in our system are the Storage Provider (CSP), Data Owner(DO), 

Data User(DU), and Blockchain Nodes(BN). The characteristics and roles of each party are shown 

as follows. 
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Fig. 1. Our Framework Model 

 

a) Service providers with robust processing and storage capacities are known as Cloud Storage 

Providers (CSP). When a Data User (DU) makes a retrieval request, the CSP extracts the 

corresponding ciphertext from the encrypted data stored on behalf of the data sender (users). 

The final step involves returning the retrieval result to the DU and recording it on the 

blockchain. 

b) The Data User (DU) generates a search token based on the keywords and the local database 

stored on the blockchain and then sends the trapdoor to the Cloud Storage Provider (CSP). 

c) The blockchain network consists of nodes represented by candidates, hiring agencies, and other 

entities. Its primary responsibility is to maintain the network and enable smart contracts, which 

can be used to store user data and local databases. 

d) Data Owners (DO) are responsible for maintaining the system and resolving issues. They play a 

pivotal role in allocating and distributing access tokens to users. Their tasks include generating 

encryption keys, creating and modifying the encrypted index, and generating keys for users 

upon request, especially when users initiate search operations. Additionally, they create local 

databases and store them on blockchains. 

3.4. leakage Pattern  

Let 𝑄 be a set of 𝑞-queries, with each pair (𝑡, 𝑤)representing a keyword and 𝑡 representing the 

query's timestamp. The following outlines the leaking of the following [40]: 

1. 𝑨𝒄𝒄𝒆𝒔𝒔 𝑷𝒂𝒕𝒕𝒆𝒓𝒏: This indicates the content of a document based on the query keyword. For 

each query keyword 𝑤, the access pattern is defined as 𝑎𝑝(𝑤) = 𝐼𝐷(𝑤), 𝑤ℎ𝑒𝑟𝑒 𝐼𝐷(𝑤) is the 

document's ID number. 

2. 𝑺𝒆𝒂𝒓𝒄𝒉 𝑷𝒂𝒕𝒕𝒆𝒓𝒏: This shows the search patterns for each keyword 𝑤, defined as 𝑠𝑝(𝑤) =
{𝑡 ∣ (𝑡, 𝑤) ∈ 𝑄}. 

3.5 The 𝒅𝒆𝒇𝒊𝒏𝒊𝒕𝒊𝒐𝒏 of our system consists of six probabilistic polynomial-time (𝑃𝑃𝑇) algorithms, 

which are as follows: (𝑆𝑒𝑡𝑢𝑝, 𝐿𝑜𝑐𝑎𝑙𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒, 𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟, 𝑆𝑒𝑎𝑟𝑐ℎ, 𝐷𝑒𝑐, 𝑎𝑛𝑑 𝑈𝑝𝑑𝑎𝑡𝑒) . Each of 

these algorithms plays a crucial role in the functionality and security of our scheme. The formal 

constructions of these algorithms are outlined as follows:  
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1. (𝑀𝑆𝐾; 𝐾𝑐𝑜𝑢𝑛𝑡, 𝑆𝑐𝑜𝑢𝑛𝑡;  𝑃𝑟𝑒𝑠 , 𝐸𝑖𝑑𝑥   ) ← 𝑺𝒆𝒕𝒖𝒑(𝜆, ⊥; ⊥; ⊥): This algorithm initializes the system 

parameters 𝜆 and generates the necessary cryptographic keys 𝑀𝑆𝐾. It sets up the environment 

for secure storage and retrieval operations. The algorithm generates a set of maps, which are 

subsequently stored on both the server and the blockchain. 

2. (𝐾𝑐𝑜𝑢𝑛𝑡[𝑤], 𝑆𝑐𝑜𝑢𝑛𝑡[𝑤]) ← 𝑳𝒐𝒄𝒂𝒍𝑹𝒆𝒕𝒓𝒊𝒆𝒗𝒆(𝑏𝑤): This algorithm is responsible for retrieving 

the current state from the local database stored on the blockchain. It ensures that the most recent 

information is accessed for processing subsequent operations. They are utilized when making 

updates and search requests. 

3. (𝐾𝑐𝑜𝑢𝑛𝑡[𝑤], 𝑆𝑐𝑜𝑢𝑛𝑡[𝑤], 𝑏𝑤  ) ← 𝑻𝒓𝒂𝒑𝒅𝒐𝒐𝒓(𝑀𝑆𝐾, w) : This algorithm generates the search 

token, also referred to as the trapdoor. The inputs for this process are the keyword to be 

searched and the master secret key (𝑀𝑆𝐾). The output is the Search Token, which encapsulates 

the state of the most recent encrypted value along with the word counter. Cryptographic 

techniques are employed to ensure the keyword remains confidential while enabling the search 

functionality. These tokens are used when initiating a search request. 

4. 𝐸𝑟𝑒𝑠 ← 𝑺𝒆𝒂𝒓𝒄𝒉(𝐾𝑐𝑜𝑢𝑛𝑡[𝑤], 𝑆𝑐𝑜𝑢𝑛𝑡[𝑤], 𝑏𝑤  ): The inputs for this algorithm include the search 

token provided by the data owner. Represented by the current status  𝑆𝑐𝑜𝑢𝑛𝑡[𝑤] with the update 

counter  𝐾𝑐𝑜𝑢𝑛𝑡[𝑤] on the keyword. 𝑤  The algorithm interacts with the server to locate the 

encrypted data associated with the keyword 𝑤. It ensures that the search operation is both 

efficient and secure, resulting in a set of encrypted values 𝐸𝑟𝑒𝑠 as the output. 

5. 𝑃𝑟𝑒𝑠 ← 𝑫𝒆𝒄(𝐸𝑟𝑒𝑠): This decryption algorithm allows the data owner to decrypt the retrieved 

encrypted 𝐸𝑟𝑒𝑠  results. It ensures that only authorized users can access the plaintext 𝑃𝑟𝑒𝑠 data 

from the encrypted storage. In this step, the owner makes a filter for deletion value. They are 

utilized when initiating a search request. 

6. (𝑀𝑆𝐾; 𝐾𝑐𝑜𝑢𝑛𝑡
′, 𝑆𝑐𝑜𝑢𝑛𝑡

′;  𝑃𝑟𝑒𝑠
′ , 𝐸𝑖𝑑𝑥

′  ) ← 𝑼𝒑𝒅𝒂𝒕𝒆(𝑀𝑆𝐾, ind, doc, op; 𝐾𝑐𝑜𝑢𝑛𝑡 , 𝑆𝑐𝑜𝑢𝑛𝑡; E𝑖𝑑𝑥) : 

This algorithm handles the addition and deletion operation 𝑜𝑝 of keyword-document pairs in 

the encrypted index. It maintains the integrity and confidentiality of the data while allowing 

dynamic updates to the system. The output of this algorithm is modified for these maps 

𝐾𝑐𝑜𝑢𝑛𝑡
′, 𝑆𝑐𝑜𝑢𝑛𝑡

′;  𝑃𝑟𝑒𝑠
′ and 𝐸𝑖𝑑𝑥

′   

These six algorithms collectively define the functionality and security properties of our dynamic 

searchable encryption scheme, providing a comprehensive framework for secure and efficient data 

storage and retrieval. 

 

4. Our Optimize DSSE framework structure 

Overview  
In this section, we introduce our system, which is the first method for searchable encryption that 

guarantees both forward and backward privacy. The primary objective of this scheme is to maintain 

optimal communication complexity while eliminating the need for public key operations. Unlike 

traditional approaches that pseudorandomly generate all states with a fixed key, our system employs 

a novel method where the data owner selects a random ephemeral key each time a new state is 

generated. In our approach, the current state for a keyword is derived by encrypting the previous 

state using the ephemeral key. This ephemeral key is then encrypted with the current state and 

stored on the server side. The state is integrated with the encrypted value contained within the 

encrypted index. The server can retrieve the ephemeral key only when it is aware of the current 

state. By using the ephemeral key, the server can decode the current state to obtain the previous 

state, enabling it to conduct searches by iteratively collecting all states. A key advantage of our 

system is that the client only needs to provide the server with the most recent state, keeping the 
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search token size constant. Forward privacy is ensured because the server cannot deduce unknown 

states from the currently known states and keys. Additionally, backward privacy is maintained as 

the server cannot distinguish previously added or deleted keywords, since the results are returned in 

encrypted form. The procedures of the scheme are depicted in Figure2. The algorithms that 

illustrate the forward and backward evolution of states in the update and search protocols are also 

provided below: 

 
Fig. 2. The query for the keyword 𝒘 from our system 

This innovative design ensures secure, efficient, and privacy-preserving searchable encryption, 

making it a robust solution for protecting sensitive data in dynamic environments. 

Setup protocol: In the setup protocol, the data owner generates 𝑀𝑆𝐾 , 𝐾𝑐𝑜𝑢𝑛𝑡 , and 𝑆𝑐𝑜𝑢𝑛𝑡 

according to the specifications outlined in the setup method. 𝑀𝑆𝐾 represents a 𝜆 -bit long-term 

key designated for encrypting keywords. 𝐾𝑐𝑜𝑢𝑛𝑡 and 𝑆𝑐𝑜𝑢𝑛𝑡 contain empty maps representing 

local databases, including search counters and distinct keyword counters, which will record 

states on the blockchain network side. The inclusion of the long-term key ks prevents the server 

from autonomously generating tokens. Additionally, the data owner initializes two empty maps: 

𝑃𝑟𝑒𝑠, intended for storing plaintext search results (𝑎𝑐𝑐𝑒𝑠𝑠 𝑝𝑎𝑡𝑡𝑒𝑟𝑛), and 𝐸𝑖𝑑𝑥, which holds the 

encrypted index. These maps are stored on the server.  

𝑺𝒆𝒕𝒖𝒑(𝜆, ⊥; ⊥; ⊥) 

Data Owner: 
 

1:  𝑀𝑆𝐾
$

← {0,1}𝜆  // store in owner 

 
 

2:  
𝐾𝑐𝑜𝑢𝑛𝑡 ← 𝑒𝑚𝑝𝑡𝑦 // send to the blockchain  

𝑆𝑐𝑜𝑢𝑛𝑡 ← 𝑒𝑚𝑝𝑡𝑦 // send to the blockchain 

 

3: 
𝐸𝑖𝑑𝑥 ← 𝑒𝑚𝑝𝑡𝑦 𝑚𝑎𝑝   // send to server 

𝑃𝑟𝑒𝑠 ← 𝑒𝑚𝑝𝑡𝑦 𝑚𝑎𝑝   // send to server 

 

Update data:  When updating a file that contains a keyword 𝑤w with identifier 𝑖𝑛𝑑, the data 

owner follows a systematic process to ensure both efficiency and security. Initially, the data 

owner retrieves the previous state 𝑠𝑡𝑐   from the local state store on the blockchain side using the 

mappings ( S← 𝑆𝑐𝑜𝑢𝑛𝑡[𝑏𝑤𝑖
] , C← 𝐾𝑐𝑜𝑢𝑛𝑡[𝑏𝑤𝑖

]) (lines 1-3 in the Update algorithm). Next, the 

data owner generates a random ephemeral key 𝐾𝐶

$
← {0,1}𝜆 and advances the state to the 

current state 𝑆𝐶   using a pseudorandom permutation (lines 7-9). The local data retrieval location 
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𝑏𝑤𝑖
 is generated using the private secret key 𝑀𝑆𝐾 and the hash function H1 , following the 

function 𝑏𝑤𝑖
← F(𝑀𝑆𝐾, H1(w))  (line 2). To maintain backward privacy, a secret key  𝑠𝑘𝐶 ←

𝐹(𝑀𝑆𝐾, 𝑤||𝐶) is renewed with each update query. This renewal obscures the contents of the 

encrypted value, preventing the server from detecting additions or deletions during the 

operation 𝑜𝑝 (line 9). The ephemeral key 𝑆𝐶 is not stored on the owner or blockchain side but is 

embedded in the encrypted index entry  𝐸𝑣𝑎𝑙𝑢 that will be stored on the server side (line 10). 

The owner also generates a reference 𝑙𝑜𝑐 from the current state and the keyword (line 11). The 

pair (𝑙𝑜𝑐 and 𝐸𝑣𝑎𝑙𝑢) is sent to the server, which then updates its map 𝐸𝑖𝑑𝑥 accordingly (line 12). 

Finally, the local maps (𝐾𝑐𝑜𝑢𝑛𝑡 and 𝑆𝑐𝑜𝑢𝑛𝑡)  on the blockchain side are updated to reflect these 

changes (line 13). This meticulous process ensures the integrity and privacy of the data during 

updates. 

 

𝐔𝐩𝐝𝐚𝐭𝐞(𝑀𝑆𝐾, ind, doc, op; 𝐾𝑐𝑜𝑢𝑛𝑡, 𝑆𝑐𝑜𝑢𝑛𝑡; E𝑖𝑑𝑥) 

Data Owner:  

1:  𝑓𝑜𝑟 𝑖 =  1 𝑡𝑜 |𝑑𝑜𝑐|  
2:    𝑏𝑤𝑖

← F(𝑀𝑆𝐾, H1(w)) 

             Retrieve from the blockchain network 

3:    S← 𝑆𝑐𝑜𝑢𝑛𝑡[𝑏𝑤𝑖
] , C← 𝐾𝑐𝑜𝑢𝑛𝑡[𝑏𝑤𝑖

] 

4:    𝐢𝐟 (𝑆 , 𝐾) = ⊥ then 

5: 
         C← 0, S

$
← {0,1}𝜆 

6:    C← 𝐶 + 1 

7: 
   𝐾𝐶

$
← {0,1}𝜆 

8:    𝑆𝐶 ← 𝐺(𝐾𝐶 , 𝑆𝐶−1||𝐶  ) 

9:    𝑠𝑘𝐶 ← 𝐹(𝑀𝑆𝐾, 𝑤||𝐶) 

10:    𝐸𝑣𝑎𝑙𝑢 ← (𝐺( 𝑠𝑘𝐶  , (𝑜𝑝 ‖𝑖𝑛𝑑))|| 𝐾𝐶) ⊕ 𝐻2(𝑏𝑤𝑖
||𝑆𝐶||𝐶) 

11:    𝑙𝑜𝑐 ← 𝐻3(𝑏𝑤𝑖
||𝑆𝐶||𝐶) 

12:   Update  𝐸𝑖𝑑𝑥[𝑙𝑜𝑐] ← 𝐸𝑣𝑎𝑙𝑢 in server 

 

13: 
  Update 𝐾𝑐𝑜𝑢𝑛𝑡[ 𝑏𝑤𝑖

] ←  𝐶  in blockchain 

  Update 𝑆𝑐𝑜𝑢𝑛𝑡 [ 𝑏𝑤𝑖
] ←  𝑆  in blockchain 

 

Search Data: To search a keyword 𝑤, the data owner follows a systematic algorithm. Initially, 

the data owner retrieves the current state 𝑆  and 𝐶  from the local database stored on the 

blockchain, denoted as S← 𝑆𝑐𝑜𝑢𝑛𝑡[𝑏𝑤𝑖
] , 𝐶 ← 𝐾𝑐𝑜𝑢𝑛𝑡[𝑏𝑤𝑖

] (lines 1-2 in the search algorithm). 

The first step involves verifying whether the keyword 𝑤  exists in the encrypted index by 

examining the retrieved values from the blockchain. If the keyword is not found in the 

encrypted index, the process terminates (lines 3-4).  Subsequently, the algorithm computes the 

search trapdoor and sends a search token, which includes the encrypted keyword and the 

current state (𝑆 , 𝐶 , 𝑏𝑤), to the server (lines 5-6). Based on the current state 𝑆 , the server 

generates all previous states 𝑆𝑖−1  and identifies the corresponding update sequence. Within the 

algorithm's for-loop, the server recovers the ephemeral key 𝐾𝑖 (line 10), which is then utilized 

to retrieve the previous state   𝑆𝑖−1 ← 𝐺−1(𝐾𝑖, 𝑆𝑖||𝑖  ) (line 13).  The server conducts a backward 

search through the update sequence using the state 𝑆𝑖. The encrypted values associated with the 

keyword are compiled into a set 𝐸𝑟𝑒𝑠   (line 12). To mitigate access pattern leakage and optimize 

storage efficiency, these results are deleted from the server after extraction (line 11). 

Upon retrieving all encrypted values associated with the keyword and updating the encrypted 

index, the encrypted results 𝐸𝑟𝑒𝑠 are transmitted to the data owner. Given that both "add" and 

"delete" operations are permissible, the data owner must ensure that deleted files are excluded 

from the result set. This is achieved by maintaining a set 𝑃𝑟𝑒𝑠, which contains the identifiers of 

deleted files throughout the search process. When a delete update is encountered, the server 

inserts the file identifier 𝑖𝑛𝑑  into 𝑃𝑟𝑒𝑠 . Conversely, if an add update is detected and 𝑖𝑛𝑑  is 

present in 𝑃𝑟𝑒𝑠 , the data owner removes 𝑖𝑛𝑑  from 𝑃𝑟𝑒𝑠 . This meticulous filtering process 
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ensures that only the added results are retained. The data owner performs this filtering to ensure 

the server remains unaware of which data was subsequently deleted or added, thus maintaining 

backward privacy (lines 14-21).  After completing the search, the data owner updates the local 

data for the keyword to a null value ⊥  on the blockchain, ensuring the integrity and 

confidentiality of the search process. 

 

𝑺𝒆𝒂𝒓𝒄𝒉(𝑀𝑆𝐾, 𝑤, 𝑜𝑝; 𝐾𝑐𝑜𝑢𝑛𝑡, 𝑆𝑐𝑜𝑢𝑛𝑡; 𝐸𝑖𝑑𝑥 , 𝑃𝑟𝑒𝑠) 

Data Owner: 

1:  𝑏𝑤 ← F(𝑀𝑆𝐾, H1(w)) 

Retrieve from the blockchain network 

2:    S← 𝑆𝑐𝑜𝑢𝑛𝑡[𝑏𝑤𝑖
] , C← 𝐾𝑐𝑜𝑢𝑛𝑡[𝑏𝑤𝑖

] 

3:  𝐢𝐟 (𝑆 , 𝐶) = ⊥ then 

4:       If the keyword 𝑤 not inserted then return ∅ ; 

5:  𝒆𝒍𝒔𝒆  

6: Send (𝑆 , 𝐶 , 𝑏𝑤 ) to server  

Server: 

7: 𝐸𝑟𝑒𝑠 ← {} 

8: 𝑓𝑜𝑟 𝑖 =  𝐶 𝑡𝑜 1 𝑑𝑜 

9:    𝑙𝑜𝑐 ← 𝐻3(𝑏𝑤||𝑆𝑖||𝑖) 

10:    (𝐺( 𝑠𝑘𝐶  , (𝑜𝑝 ‖𝑖𝑛𝑑))|| 𝐾𝑖) ← 𝐸𝑖𝑑𝑥[𝑙𝑜𝑐] ⊕ 𝐻2(𝑏𝑤||𝑆𝑖||𝑖) 

11: Delete 𝐸𝑖𝑑𝑥[𝑙𝑜𝑐] 
12:   𝐸𝑟𝑒𝑠 ← 𝐸𝑟𝑒𝑠 ∪ 𝐺( 𝑠𝑘𝐶  , (𝑜𝑝 ‖𝑖𝑛𝑑)) 

13:   𝑆𝑖−1 ← 𝐺−1(𝐾𝑖, 𝑆𝑖||𝑖  ) 

Send 𝐸𝑟𝑒𝑠 to owner 

Data Owner: 

14: 𝑃𝑟𝑒𝑠 ← {} 

15: 𝑓𝑜𝑟 𝑖 =  1 𝑡𝑜 | 𝐸𝑟𝑒𝑠 | 𝑑𝑜 

16:       𝑠𝑘𝑖 ← 𝐹(𝑀𝑆𝐾, 𝑤||𝑖) 

17:      (op ‖ind) ← 𝐺−1(𝑠𝑘𝑖,𝐸𝑟𝑒𝑠) 

18:  𝒊𝒇 𝑜𝑝 = "𝑎𝑑𝑑"   𝑡ℎ𝑒𝑛 

19:     𝑃𝑟𝑒𝑠 ←  𝑃𝑟𝑒𝑠 ∪ 𝑖𝑛𝑑 

20:  else 

21:    𝑃𝑟𝑒𝑠 ←  𝑃𝑟𝑒𝑠 −  𝑖𝑛𝑑 

 

22: 
  Update 𝐾𝑐𝑜𝑢𝑛𝑡[ 𝑏𝑤𝑖

] ← ⊥  in Blockchain 

  Update 𝑆𝑐𝑜𝑢𝑛𝑡 [ 𝑏𝑤𝑖
] ← ⊥  in Blockchain 

5. Experimental analysis   

  A small Ethereum network was constructed locally to experiment with the distinct 

performance features and security of our proposed system. The only difference between the 

simulated network and the actual Ethereum environment is that the mining block time is set to 0. 

With this approach, we can concentrate on the smart contract's search functionality even amidst 

Ethereum's complex network environments and laborious mining procedures, which include 

broadcast and transaction mining delays. We assessed the search time by returning a predefined 

number of matching documents, primarily evaluating the effectiveness of the search and update 

phases. To determine the updating cost, we added and deleted a set number of files and 

measured the associated time and gas consumption. We compared our proposed system with 

existing DSSE schemes, specifically PPSE [38] and Jiang [37] approaches, which operate in 

similar blockchain environments. The hardware setup consists of an Intel (R) Core (TM) i5-

10400F CPU @2.90 GHz processor with 8 GB of RAM, and the environment is based on a 

Windows 11 64-bit operating system, x64-based processor. Our proposed system utilizes the 

original dataset sourced from the Enron email[41] dataset, from which a subset is extracted for 

testing purposes. During the experiment, the smart contract is implemented using the Solidity 

language, while Python is employed as the language for interacting with the smart contract. 
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Additionally, we provide the 𝑃𝑅𝐹 𝐹 implemented with AES-128/256 and 𝑃𝑅𝑃 𝐺 implemented 

with AES-128/128. The utilization of stronger hash functions such as SHA-3 does not 

significantly impact the efficiency of our scheme, as hashing is not the primary cornerstone of 

our design. Our suggested scheme simulation experiment assesses the search time by returning 

a set number of matching documents, primarily testing the effectiveness of the search and 

updating phases. A set number of files are added and deleted to determine the updating cost. 

The PPSE[38], and Jiang[37] of the same backward private level and the same blockchain 

environment, which also stores indexes and documents independently, are compared with our 

suggested approach. It's important to note that the results for the comparison schemes were 

obtained from the article[38]. Our system mitigates side-channel attacks by using unique 

ephemeral keys for each state transition, ensuring timing patterns don't reveal encrypted data. It 

maintains consistent query response times, preventing attackers from inferring data size based 

on processing speed. Additionally, pseudorandom permutations in state transitions add further 

obfuscation, protecting against information leakage through observable patterns. This structure 

ensures a robust defense against side-channel vulnerabilities. 

We assessed the search time by returning a predefined number of matching documents, 

primarily evaluating the effectiveness of the search and update phases. To determine the 

updating cost, we added and deleted a set number of files and measured the associated time and 

gas consumption.  We compared our proposed system with existing DSSE schemes, specifically 

PPSE and Jiang's approach, which operate in similar blockchain environments. The following is 

an analysis of the outcomes. 

 
Fig.3. updates gas consumption 

 
The number of matched documents is set from 100 to 500 for searching to demonstrate the 

basic method. The growing trend of search time as the number of matched documents varies is 

seen in Figure 5. After carrying out each strategy thirty times, we average the results. In our 

scheme, a comparison with others reveals that as the number of matched documents increases, 

there is a slight decrease in the efficiency of the search algorithm in terms of time cost. In 

contrast, for other schemes, the increase is linear and substantial with the rise in the number of 

retrieved documents. The amount of data to be retrieved and the duration of the search is 

increasing with the size of the dataset in the cloud environment. The loading time increases 

with the number, resulting in worse algorithm execution efficiency compared to the cloud 

environment. Figure 4, however, shows that our scheme's query efficiency is substantially 

quicker than that of the other schemes in the cloud environment. Our system is quicker than the 

asymmetric encryption employed in comparable schemes since it is based on symmetric 

primitive encryption technologies. Furthermore, compared to research on the identical 

blockchain environment, the security in our scheme is noticeably greater than [37]. Query 
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efficiency is an advantage. To protect data, search functions on the blockchain are carried out 

using smart contracts. 

 
Fig. 4. Update addition time 

 

 
Fig. 5. Update delete time 

The usage and time expenses that vary depending on how many files are added or removed are 

shown in Figures 3–5. The number of files added and removed causes a linear rise in both the 

execution time and gas consumption as in Figure 3 (gas is a unit of measurement used to 

quantify the amount of computing labor required to complete an action on the network 

blockchain). The (keyword, identifier) inverted index pairs in the file are raised from 20 to 100 

for testing by choosing files of varying sizes. Figure 4 and Figure 5 demonstrate that, in the 

cloud context, the update efficiency of the Jiang [37] and PPSE[38] systems are much less than 

our method. In the same blockchain context, our system design not only offers clear 

performance advantages in updates but also achieves a higher level of backward privacy 

compared to Jiang [37], which does not ensure backward privacy. The graphs show that for 

comparison systems, the time growth is substantially linear as the result size increases, but in 

our system, the cost of time growth is much less due to changes in the database size. This is not 

surprising, as our system uses symmetric encryption to ensure forward and backward privacy, 

whereas Jiang [37] and PPSE [38] approaches rely on one-way trapdoor permutations (e.g. 
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implemented with RSA). All changes and deletions made to the blockchain are handled via 

smart contracts, which are inexpensive, decentralized, and have a high timeliness. 

The experimental results demonstrate the effectiveness and efficiency of our proposed DSSE 

framework, particularly in terms of search and update operations. By leveraging symmetric 

encryption and optimizing storage efficiency, our system achieves superior performance 

without compromising security, making it a robust solution for protecting sensitive data in 

dynamic environments. Quickly retrieves data when searching and updating requests compared 

to other systems. 

 

 
Fig. 6. Query search time. 

In conclusion, the proposed scheme achieves the following features. 
Security 

DSSE framework provides strong security against attacks and ensures data privacy. It also 

includes forward and backward privacy to prevent the server from learning about the new or 

deleted documents.  We secure secret keys by providing ephemeral keys and utilizing secure 

encryption ensuring data cannot be read by unauthorized parties. 
  

Performance 

Our scheme is tested for efficient performance on a local Ethereum network. The gas 

consumption for the updates is low, even though search times are far better than the other 

schemes. Note that this serves as an optimization under the hood (symmetric encryption is 

lighter than asymmetric). 
 

Scalability 

Technically, our DSSE scheme can manage large data sets well. Experimental results 

demonstrate that the execution time and gas consumption increase in linear form according to 

the number of files, guaranteeing performance efficiency. 

 

Privacy 

Our framework protects both data owner and client privacy. Data is stored encrypted, and 

pseudorandom permutations ensure the server cannot infer information. The search process 

maintains confidentiality, providing forward and backward privacy to safeguard data operations. 

6. Summary 

In this paper, we emphasize the practical application of Dynamic Searchable Symmetric 

Encryption (DSSE) and introduce the first efficient framework that maintains constant client 

storage Our suggestion is a novel dynamic SSE technique that addresses both kinds of privacy 
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without requiring complex asymmetric procedures. With this approach, we may surpass previous 

techniques! Our strategy operates in a three-party context. The data owner, who manages key 

management and data encryption, is the first party. Serving as a server, the second party has a 

large amount of storage and powerful processing to handle encrypted data. The third-party 

consists of blockchain nodes that manage local database storage, ensuring data integrity and 

security. To enhance efficiency, we propose to use an encrypted inverted index on the server to 

map keywords to their corresponding document IDs. This approach greatly reduces client-side 

calculations, limiting the server's role primarily to storage tasks rather than task processing. All 

calculations in our system are performed server-side.As a result, the cost of generating a search 

token, referred to as a trapdoor, remains constant regardless of the frequency of keyword updates. 

This design ensures that our system is compatible with smart devices, as there is no need for 

local data storage or intensive computations on these devices. Thus, our framwork is suitable for 

a wide range of service  providers and can be adapted as a global model. This versatility makes 

our solution applicable across various critical systems, enhancing its practical utility and 

expanding its potential impact. 

 

7. Future Work 
While demonstrating that forward and backward privacy can be achieved with high efficiency 

is a positive step, further research is needed before SSE methods can be employed in scenarios 

where information leakage is undesirable. This ongoing work will help ensure the robustness 

and applicability of SSE in such sensitive contexts. 
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 ابحاث البصرة )العلميات( الملخص باللغة العربية لمجلة  نموذج 

 ،*2زيد أمين عبد الجبار  ،1م صباح بلبل الس

 ، العراق 61004، المديرية العامة للتربية، البصرة، وزارة التربية، البصرة1

 ، العراق 61004قسم علوم الحاسوب، كلية التربية للعلوم الصرفة، جامعة البصرة، البصرة، 2

  

 معلومات البحث الملخص 

يمكن لأصحاب البيانات الذين يسعون إلى تحسين قوة المعالجة أو التخزين أو النطاق الترددي  

جديدة   تحديات  يطرح  التحول  هذا  فإن  ذلك،  ومع  السحابية.  الحوسبة  خدمات  من  الاستفادة 

(، الذي يجمع بين تقنيات  SEتتعلق بالخصوصية وأمن البيانات. يعالج التشفير القابل للبحث )

السماح   خلال  من  البيانات(  مستخدمي  خصوصية  )انتهاك  القضايا  هذه  والبحث،  التشفير 

على  الرئيسية.  الكلمات  باستخدام  والبحث  سحابي  خادم  إلى  ونقلها  المستخدم  بيانات  بتشفير 

أمان بشأن  مخاوف  الأخيرة  الواقعية  الهجمات  من  العديد  أثارت  فوائده،  من  التشفير    الرغم 

للبحث. من المرجح أن يصبح ضمان الخصوصية الأمامية والخلفية متطلباً قياسياً في   القابل 

أنظمة   البدائيات   SEتطوير  حصرياً  يستخدم  نظامًا  نقترح  القضايا،  هذه  لمعالجة  الجديدة. 

إل المتماثلة، مما يحقق كفاءة اتصال عالية وخصوصية أمامية وخلفية. بالإضافة  ى  التشفيرية 

اللاحقة   التحديثات  نتائج  تحميل  يتم  لأنه  المحسنة  الإخراج   / الإدخال  كفاءة  على  نؤكد  ذلك، 

 SEفقط عند البحث. يتم تقليل الوقت المطلوب لاسترداد النتائج بشكل كبير مقارنة بأساليب  

الحالية التي أظهرنا أن مخططنا يحقق كفاءة فائقة. علاوة على ذلك، من خلال دمج خدمات  

مع الخدمات السحابية، قمنا بتطوير نظام تشفير ذكي قابل للبحث مناسب    blockchain  شبكة

التي أجريناها على شبكة   الذكية خفيفة الوزن. في دراستنا  ، وجدنا أن  Ethereumللأجهزة 

. تشير النتائج إلى أن Jiangو  PPSEطريقتنا فعاّلة وآمنة، خاصة عند مقارنتها بأساليب مثل  

تائج من حيث الأداء والخصوصية في بيئات سحابية ديناميكية، مما يجعله حلاً  نظامنا يحقق ن 

 لحماية المعلومات السرية. 

 2024 ايار 16الاستلام        

 2024حزيران   25القبول          

 2024حزيران  30النشر           

 المفتاحية الكلمات  

كفاءة الإدخال/الإخراج، شبكة  

blockchain ،الأدوات البدائية المتماثلة ،

(، الأمان SEالتشفير القابل للبحث )

 الخلفي، الأمان الأمامي.
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