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1. Introduction

In many scientific domains, including biophysics and biomedicine, IEs are crucial. Numerous
varieties of integral equations have been examined to address a range of issues in applied
mathematics, including modeling and informatics [10,4].

Two-dimensional 2D linear IEs are the topic of this paper [4]
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ulx,y) =f(x,y)+ fyfﬂkz(x,y, z,s)u(z,s)dzds. (1.1b)
0

VIE and MIE respectively. where (x,y) € D (2 - a compact subset of Euclidean space R* or
compact manifold) and f is the given function in domain D and u is unknown function in D . The
given kernel k is (real-values) sufficiently smooth defined on S={(xy,25):0<z<x<
a,0 < s <y < b}. Inmany situations, solving IEs analytically can be difficult; Therefore, it is better
to find numerical solutions. The numerical solutions of 2D IEs have been the subject of numerous
research attempts. He was presented Han Guogiang in (1994) numerical solution of 2D linear VIEs
by collocation and iterated collocation is considered. The asymptotic error expansion of the iterated
collocation was obtained [8]. The Guogiang et al. numerical solution of 2D nonlinear VIEs by
collocation and iterated collocation method was introduced in (2000). Where it was asymptotic error
expansion of iterated collocation solution is obtained by using Richardson's extrapolation [9]. Nemati
and Ordokhani in (2012) presented an approximate solution for the 2D nonlinear VIEs using
Legendre orthogonal polynomials [18]. Somayyeh et al in (2013) found approximate solution for
linear 2D VIEs, based on the interval approximation of the true solution by truncated Chebyshev
series [7]. In (2021), Mikkola introduced an iterative numerical technique for approximating solutions
of the second kind of 2D MIEs. The procedure made use of a suitable cubic formula and successive
Mann-type approximations [15]. 2D MIEs were solved by Mirzaei and Samadyar (2018) using an
effective numerical technique. This technique uses the collocation method to operate on 2D
orthogonal Bernstein polynomials (2D-OBPs). This easy technique has been used to solve an
algebraic system of equations that is an engineering study issue that can be solved with the fewest
possible steps [16]. In order to solve 2D linear and nonlinear VIES, Yubin Pan and Jin Huang Fei
(2020) proposed using numerical quadrature. Initially, they extend the one-dimension (1D) quadratic
formula to the 2D scenario, along with the associated error asymptotic expansion. They then built an
extrapolation method and a histogram based on the quadrature and error expansion formula [19]. AL
— Humedi and Munaty in (2022) used the SPGM to solve the first type of VIEs [1]. A numerical
method for 2D-VIEs is presented by Hafid-Lib and et (2023). They were able to develop an assembly
solution by employing a technique that makes use of Taylor polynomials in order to approximate the
2D-VIEs solution [14]. The analytical solution of 2D linear IEs is the goal of this research. We derive
the SPGM based on Chebyshev and Laguerre orthogonal polynomials to approximate the solution of
these equations. This method has the ability to produce fewer errors and increase accuracy compared
to other analysis methods. The search order is as follows. Also, define the polynomials in the (1D)
and (2D) in the two and three sections. The Chebyshev and Laquerre polynomials will be used to
generate the SPGM, and will explain how this approach yields an approximative solution in section
four. In section five, will present a few instances that illustrate how the new approach performs in
comparison to the outcomes of previous approaches. Section six will provide the research and work's
conclusions.

2. Orthogonality Polynomial on Intervals [1]

A sequence of polynomials {¢,(x)}n=oWith a degree [¢,(x)] = n for each n is called
orthogonal with respect to the weight function w(x) on the C[a, b] if the inner product of the
polynomials ¢;, ¢;

b
(0 oW = f 0: (009, w) dx = 6,

0 G LE]J

with &, ; ={1 i

where &; ; is the Kronecker delta function, where i,j € N .

138



H. O. Al-Humedi, S. T. Al-Sarirani

3. Two-Dimensional Orthogonality Polynomials [21]

By considering 1D orthogonality polynomials, we define an (n + 1)? set of 2D orthogonality
polynomials as:

¢ij(6y) = ¢;(X)e;(y) , Lj = 012..,n.
Therefore, 2D basis orthogonality vector is as follows:

0, y) = [0 (), 9o () 0n (), 91 ()P (¥) -+, 1 (D)@ (¥), -+,
Pn ()P (), wors Pr ()P ()]*

= (i) ® ;)" , ij =012..,n,
in which
Pi(x) = [@po(x), 01 (x), -, n (], ;) = [P0, 013, =+, O]
are 1D vectors. The weight function in 2D is w(x,t) = w(x)w(y) on the interval [a, b] X [a, b] .
4. The derivation method

By introducing the integral operator k; and k, defined is

Y rx
Kiu(x,y) = f j ki(x,y,2,5)u(z, s)dzds,
0o Jo

or

y
Kyu(x,y) = j f ks (6,9, 2, )u(z, $)dzds,
0 O

Egs (1.1) can be written in the following forms

u(x,y)

=f(x,y) + Kju(x,y), (4.1a)
or

u(x,y)

= f(x,y) + Ku(x,y), (4.1b)

In order to solve Eqgs (4.1), we shall be the SPGM.

First let's see how SPGM works numerically, B, it is a space of polynomials defined in
[0,1] x [0,1] with the maximum degree nm , ¢;(x), ¢;(y) are Laguerre polynomials. As

an

= span{@o(X)Po(¥), ) Po(X)Pm (), 1 (X)Po (V). , 91 () P V), , Pr (X)Po (V), *+, P (X) 1 ()}

Define the polynomial space as V,,,, = {u(x,y): u € Py} -

Find u,,, € V,, such that Egs. (4.1) can be written

(unmr vnm)w = (f’ vnm)w + (Klunm: vnm)w (4‘2(1)

or
(Unimo Vumdw = () Vnmdw + (K2Unm, Vnm)w (4.2b)
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Y Vpm € Pum

where

b rd
(Unm> Vnm)w = f f unm(x' Y)vnm(x' Y)W(x: }’)dxdy
a Jc

b rd ry rx
(K1Unm, Vnmdw = f f f f k1(x, Y, 2, $)unm (2, ) Vnm (x, y)w(x, y)dzdsdxdy
a 0 J0

or

b rd ry
(K2Unm, Vnm)w :f f f fkz(x'yrz;s)unm(z’S)Unm(xIY)W(x’Y)dZdexdy
a Jc YO JQ

Is inner product, the proximate solution is

n m

@) = ) i [0 + 1 (9102 D0 )] 5 @) €041 x (0]

=0 j=0

Where the control point ;; are undermined constants coefficients, ;; is constant chosen as the initial
conditions and Laguerre polynomial ¢;(x),¢;(y) ; i=012,--,n ; j=012,--,m
are used.

From Egs. (4.2) we obtain the following result

ZZBU ((pl(x)(p] (Y) + l‘ll]((pl+1(x)(p]+1(y)) ‘fr(x)‘f‘r(ynw - (f fr(x)fe(y))w

i=0 j=0
n
3

i=0j

Ms

Bl} Kl ((pl(z)(p] (S) + P-U (§01+1(z)§01+1(5))) fr(x)f‘r(y)] (4-3a)

-
1]
o

or

DD By @9 0) + 4y @12 (P11 O GO = (6 (P

i=0 j=0
n m
£ Bylle @iD95(5) + 1 (@11 DO O & (DG (43D)
i=0j=0
Where ¢&,.(x),¢é.(y),r=0,1,---,n,e=0,1,---,m are chepyshev polynomial test function
corresponding to the weigh function w(x,y) = ;, with i =0,1,---,n,j=0,1,---,m.

V(A-x3)(1-y%)

From Eqgs. (4.3) can be get the following matrix forms

F (4.4)
where,

Uij =

[uouo;  UpUm, U U, =7, U Uy, =0, UpUg, **°, unum]T (4-5)
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Aaijro) iy =0 = (@i @; ()

+ i (@ir1 ()P +1 (1)), §- () (V) (4.6)
B(bijro)i ]y =0 = Ke(@i(2)9; () + 1Wij(@0i+1(DPj+1(S))), & ()& ONDw, £=1.2
(4.7)

F(frr);l,trn=0 =
(f. 606 M),, (4.8)

5. Numerical Examples

An overall analysis of SPGM performance for a 2D IE solution is based on the absolute error
values from different methods. In other words, by comparing the results for different numbers of n
and m; the outcome will give us a clear idea about how correctly and effectively this method works,
explaining its faithful applicability to similar techniques like 2D-triangular functions [2],
rationalized Haar functions (RHF) [5], successive approximations method (SAM) [15], 2D-
orthonormal Bernstein collocation method (2D-OBPs) [16], Bernoulli collocation method (BCM)
[11], and discretization methods [12].

Example 5.1: Consider the following linear VIE in 2D [2]:

x ¥
ulx,y) = f(x,y) — j j sin(x —y —z+ s) u(z,s)dzds,
00

where f(x,y) = (x —y+ 1)cos(x +y) — (x —y)cos(x —y) . The exact solution u(x,y) =
cos(x+y).

The numerical results are compared with the numerical results obtained by using 2D- triangular
functions [2] in Tables 5.1-5.3. The absolute error, approximate solution and exact solution for n =
m = 4 are plotted in Figure 5.1.
Example 5.2: Consider the following linear MIE in 2D [13]:

x 1

ulx,y) = f(x,y) + f f(x + s)u(z, s)dzds
0

0
where f(x,y) = xy — %x? The exact solution u(x, y) = xy .

The numerical results are compared with the numerical results obtained by using Bernoulli
collocation method (BCM) [11], successive approximations method (SAM) [15] and rationalized
Haar functions (RHF) [5] in Tables 5.4-5.6. The absolute error, approximate solution and exact
solution for n = m = 4 is are plotted in Figure 5.2.
Example 5.3: Consider the following linear MIE in 2D [18]:

x 1

ulx,y) =f(xy + f f(ZS — De*u(z, s)dzds

00
where f(x,y) =sin(x) +y — %ex + é . the exact solution u(x,y) = sin(x) + y . The numerical
results are compared with the numerical results obtained by using 2D-orthonormal Bernstein
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collocation method (2D-OBPs) [16], Bernoulli collocation method (BCM) [11] in Table 5.7. The
absolute error, approximate solution and exact solution for n = m = 8 is are plotted in Figure 5.3.

Example 5.4: Consider the following linear VIE in 2D [12]:

Y x

ulx,y)=f(xy) + f f(xz + cos s)u(z,s)dzds
0

0

2 sin? y. The exact solution u(x,y) = x siny.

wheref (x,y) = xsiny — ixs + ixs cosy — ix
The numerical results are compared with the numerical results obtained by using discretization
method [12] Table 5.8. The absolute error, approximate solution and exact solution forn = m =8
is are plotted in Figure 5.4.

Table 5.1: Absolute errors at test points
(x,y) withn =m = 4 for Example 5.1

(x,y) SPGM [3]

(0,0) 8x107° 0
(0.1,0.1) 2x107° 1.4575 x 1072
(0.2,0.2) 1.4 x107* 9.3562 x 1073
(0.3,0.3) 3.1x107* 1.7768 x 1073
(0.4,0.4) 4x107* 4.2834 x 1073
(0.5,0.5) 3.1x107* 4.8953 x 107*
(0.6,0.6) 0 3.6187 x 1072
(0.7,0.7) 43x107* 2.8238 x 1072
(0.8,0.8) 7.58 X 107* 5.0821 x 1072
(0.9,0.9) 54x107* 7.8802 x 1072

Table 5.2: Absolute errors at test points
(x,y) withn = m = 8 for Example 5.1

(x,y) SPGM [3]

(0,0) 0 0
(0.1,0.1) 0 2.45x 1073
(0.2,0.2) 0 1.59 x 1073
(0.3,0.3) 0 2.39x 1073
(0.4,0.4) 0 532x 1073
(0.5,0.5) 0 3.00 x 107*
(0.6,0.6) 0 1.03 x 1072
(0.7,0.7) 0 223 %1072
(0.8,0.8) 0 2.91x 1072
(0.9,0.9 0 241%x 1072
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Table 5.3: Absolute errors at test points
(x,y) withn =m = 16 for Example 5.1

(x,y5) SPGM [3]

(0,0) 0 0
(0.1,0.1) 0 6.85 x 107*
(0.2,0.2) 1x107° 3.47 x 1074
(0.3,0.3) 2x107° 9.94 x 10™*
(0.4,0.4) 3x107° 3.88 x 1073
(0.5,0.5) 3x107° 7.68 x 1075
(0.6,0.6) 5x107° 8.37 x 1073
(0.7,0.7) 5x107° 7.65 % 1073
(0.8,0.8) 43x 1075 8.70 x 1073
(0.9,0.9) 4x107° 1.5 % 1072

approximate solution

error of u(x.t)

Figure 5.1: Plot of the exact solution, approximate solution and max. error for Example 5.1

Table 5.4: Absolute errors at test points

(x,y) withn = m = 3 for Example 5.2
(x,y) SPGM BCM [11]
(0,0) 7.1686 x 101> 3.2969690 x 1071

(0.1,0.1) 0 3.2760781 x 10~
(0.2,0.2) 0 3.1576020 x 10~
(0.3,0.3) 0 2.9536746 x 1071
(0.4,0.4) 0 2.6797218 x 10~
(0.5,0.5) 0 23534264 x 1071
(0.6,0.6) 0 1.9937474 x 1071
(0.7,0.7) 0 1.6199934 x 10~
(0.8,0.8) 0 1.250947 x 10~
(0.9,0.9) 0 9.040599 x 1072
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Table 5.5: Absolute errors at test points
(x,y) withn = m = 4 for Example 5.2

(x,y) SPGM SAM [15]

(0,0) 2.5698 x 1073 5.196012 x 1071
(0.1,0.1) 3.002x107®  5.213247 x 107!
(0.2,0.2) 3.502x107®  5.185562x 1071
(0.3,0.3) 4.093x107* 5164139 x 107!
(0.4,04) 481x1073 5.141450 x 1071
(0.5,0.5) 5.68x1073 5.126711 x 1071
(0.6,0.6) 6.74x1073 5.102234 x 1071
(0.7,0.7) 8.05x1073 5.083669 x 1071
(0.8,0.8) 9.65x1073 5.063321 x 1071
(0.9,09) 1.163x1072  5.044418 x 1071

Table 5.6: Absolute errors at test points
(x,y) withn = m = 18 for Example 5.2

X,y) SPGM RHF [5]
(0,0) 8.72 x 10717  2.251543 x 1071

(0.1,0.1) 0 2.159587 x 1071
(0.2,0.2) 0 2.085641 x 1071
(0.3,0.3) 0 1.94871 x 1071
(0.4,0.4) 0 1.665021 x 1071
(0.5,0.5) 0 1.498517 x 1071
(0.6,0.6) 0 1.422590 x 1071
(0.7,0.7) 0 1.393651 x 1071
(0.8,0.8) 0 1.321355 x 1071
(0.9,0.9 0 1.272933 x 1071

approximate solution
exact solution

error of u(xt)

Figure 5.2 : Plot of the exact solution , approximate solution and max. error for Example 5.2
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Table 5.7: Absolute errors at test points (x,y) withn = m = 8 for

Example 5.3

(x,y) SPGM BCM [11] 2D — OBPs [16]

(0,0) 1.29 x 10~ 0 1.7590 x 10710
(0.1,0.1) 0 6.73360 x 1078 6.3487 x 10712
(0.2,0.2) 0 1.08210 x 1077 3.6477 x 10711
(0.3,0.3) 0 1.07410 x 1077 2.0662 x 1071°
(0.4,0.4) 0 6.59240 x 1078 8.0123 x 1071°
(0.5,0.5) 0 1.3766 x 1071*  2.69990 x 107°
(0.6,0.6) 0 16.52040 x 1078 7.74040 x 107°
(0.7,0.7) 0 1.05080 x 10~7  1.95510 x 1078
(0.8,0.8) 0 1.04700 x 10~ 4.46400 x 1078
(0.9,0.9) 0 6.44420 x 107®  9.34810 x 1078

approximate solution
exact solution

Figure 5.3 : Plot of the exact solution , approximate solution and max. error for Example 5.3

Table 5.8: Absolute errors at test points (x,y) for Example 5.4

(x,y) SPGM SPGM [12]
n=m=6 n=m=8 n=m=6

(0,0) 2.1808 x 107 1.9902 x 1073  2.38053 x 10711
(0.2,0.2) 1x107° 0 4.24890 x 107°
(0.4,0.4) 0 0 3.25418 x 107°
(0.6,0.6) 0 0 426163 x 107°
(0.8,0.8) 0 0 1.98141 x 1078

(1,1) 0 0 2.69535 x 1078
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approximate solution
exact solution

error of u(x,t)

Figure 5.4: Plot of the exact solution, approximate solution and max. error for Example 5.4

6. Conclusion

In this work, a spectral Petrov-Galerkin method for solving two-dimensional linear integral
equations (Volterra and mixed Volterra-Fredholm) was introduced. The present method converts the
integral equations into matrices, namely blocks. Moreover, it should be noted that in the first example
of the Volterra equation, a comparison was made between the outcomes of this method with the two-
dimensional method of triangular functions [3]. It was seen that the absolute error is more accurate,
as shown in Tables 5.1-5.3 and Figure 5.1. Similarly, comparisons were made with the Bernoulli
approximation method [11], the successive approximation method [15], and the rationalized Haar
function method [5] for the mixed Volterra-Fredholm equation. The comparison revealed a minimum
absolute error using the new method, as shown in Tables 5.4-5.6 and Figure 5.2. The new method
was also compared with the two-dimensional orthogonal Bernstein approximation method [16] for
another mixed equation. This has shown a higher level of accuracy, as shown in Table 5.7 and Figure
5.3. Moreover, comparisons were made with the discretization method [12] for the fourth example of
the Volterra equation, where the new method showed a minimum absolute error, as shown in Table
5.8 and Figure 5.4. The results illustrated in Tables 5.1-5.8 corroborate the efficiency of the method
in solving two-dimensional functions of integral equations.
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