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Using a spectral Petrov-Galerkin approach (SPGM), 

the main objective of this research is to propose a 

numerical solution for the two-dimensional (2D) linear 

Volterra and mixed Volterra-Fredholm integral 

equations (VIEs and MIEs, respectively) type. We 

solving four examples that illustrate the results of the 

method compared with other methods in terms of 

excellent accuracy, powerful method and less error it 

provides for this type of integral equations (IEs).  
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1. Introduction 

      In many scientific domains, including biophysics and biomedicine, IEs are crucial. Numerous 

varieties of integral equations have been examined to address a range of issues in applied 

mathematics, including modeling and informatics [10,4]. 

Two-dimensional 2D linear IEs are the topic of this paper [4] 

𝑢(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) + ∫ ∫ 𝑘1(𝑥, 𝑦, 𝑧, 𝑠)𝑢(𝑧, 𝑠)𝑑𝑧𝑑𝑠
𝑥

0

𝑦

0

,                                                     (1.1𝑎) 

or 
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𝑢(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) + ∫ ∫ 𝑘2(𝑥, 𝑦, 𝑧, 𝑠)𝑢(𝑧, 𝑠)𝑑𝑧𝑑𝑠
Ω

𝑦

0

.                                                  (1.1𝑏) 

VIE and MIE respectively. where (𝑥, 𝑦) ∈ 𝐷  (  𝛺  - a compact subset of Euclidean space ℝ𝑘  or 

compact manifold) and 𝑓 is the given function in domain 𝐷 and 𝑢 is unknown function in 𝐷 . The 

given kernel 𝑘  is (real-values) sufficiently smooth defined on    𝑆 ≔ {(𝑥, 𝑦, 𝑧, 𝑠): 0 ≤ 𝑧 ≤ 𝑥 ≤
𝑎 , 0 ≤ 𝑠 ≤ 𝑦 ≤ 𝑏}. In many situations, solving IEs analytically can be difficult; Therefore, it is better 

to find numerical solutions. The numerical solutions of 2D IEs have been the subject of numerous 

research attempts. He was presented Han Guoqiang in (1994) numerical solution of 2D linear VIES 

by collocation and iterated collocation is considered. The asymptotic error expansion of the iterated 

collocation was obtained [8]. The Guoqiang et al. numerical solution of 2D nonlinear VIEs by 

collocation and iterated collocation method was introduced in (2000). Where it was asymptotic error 

expansion of iterated collocation solution is obtained by using Richardson's extrapolation [9]. Nemati 

and Ordokhani in (2012) presented an approximate solution for the 2D nonlinear VIES using 

Legendre orthogonal polynomials [18]. Somayyeh et al in (2013) found approximate solution for 

linear 2D VIEs, based on the interval approximation of the true solution by truncated Chebyshev 

series [7]. In (2021), Mikkola introduced an iterative numerical technique for approximating solutions 

of the second kind of 2D MIEs. The procedure made use of a suitable cubic formula and successive 

Mann-type approximations [15]. 2D MIEs were solved by Mirzaei and Samadyar (2018) using an 

effective numerical technique. This technique uses the collocation method to operate on 2D 

orthogonal Bernstein polynomials (2D-OBPs). This easy technique has been used to solve an 

algebraic system of equations that is an engineering study issue that can be solved with the fewest 

possible steps [16]. In order to solve 2D linear and nonlinear VIEs, Yubin Pan and Jin Huang Fei 

(2020) proposed using numerical quadrature. Initially, they extend the one-dimension (1D) quadratic 

formula to the 2D scenario, along with the associated error asymptotic expansion. They then built an 

extrapolation method and a histogram based on the quadrature and error expansion formula [19]. AL 

– Humedi and Munaty in (2022) used the SPGM to solve the first type of VIEs [1]. A numerical 

method for 2D-VIEs is presented by Hafid-Lib and et (2023). They were able to develop an assembly 

solution by employing a technique that makes use of Taylor polynomials in order to approximate the 

2D-VIEs solution [14]. The analytical solution of 2D linear IEs is the goal of this research. We derive 

the SPGM based on Chebyshev and Laguerre orthogonal polynomials to approximate the solution of 

these equations. This method has the ability to produce fewer errors and increase accuracy compared 

to other analysis methods. The search order is as follows. Also, define the polynomials in the (1D) 

and (2D) in the two and three sections. The Chebyshev and Laquerre polynomials will be used to 

generate the SPGM, and will explain how this approach yields an approximative solution in section 

four. In section five, will present a few instances that illustrate how the new approach performs in 

comparison to the outcomes of previous approaches. Section six will provide the research and work's 

conclusions. 

2. Orthogonality Polynomial on Intervals [1] 
 

          A sequence of polynomials {𝜑𝑛(𝑥)}𝑛=0
∞ with a degree [𝜑𝑛(𝑥)] =  𝑛  for each 𝑛  is called 

orthogonal with respect to the weight function 𝑤(𝑥) on the 𝐶[𝑎, 𝑏]  if the inner product of the 

polynomials 𝜑𝑖 , 𝜑𝑗 

〈𝜑𝑖,  𝜑𝑗〉𝑤 =  ∫ 𝜑𝑖(𝑥)𝜑𝑗(𝑥)𝑤(𝑥)
𝑏

𝑎

𝑑𝑥 =  𝛿𝑖,𝑗 , 

with  𝛿𝑖,𝑗 = {
0                    ; 𝑖 ≠ 𝑗
1                    ; 𝑖 = 𝑗

      

where 𝛿𝑖,𝑗  is the Kronecker delta function, where 𝑖, 𝑗 ∈ ℕ . 
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3. Two-Dimensional Orthogonality Polynomials [21] 

           By considering 1D orthogonality polynomials, we define an (𝑛 + 1)2 set of 2D orthogonality 

polynomials as: 

𝜑𝑖,𝑗(𝑥, 𝑦) =  𝜑𝑖(𝑥)𝜑𝑗(𝑦)    ,    𝑖, 𝑗 =  0,1,2, … , 𝑛 . 

Therefore, 2D basis orthogonality vector is as follows: 

𝜑(𝑥, 𝑦) = [𝜑0(𝑥)𝜑0(𝑦), ⋯ , 𝜑0(𝑥)𝜑𝑛(𝑦),  𝜑1(𝑥)𝜑0(𝑦) , ⋯ , 𝜑1(𝑥)𝜑𝑛(𝑦), ⋯  ,

𝜑𝑛(𝑥)𝜑0(𝑦),  … , 𝜑𝑛(𝑥)𝜑𝑛(𝑦)]𝑡 

=  (𝜑𝑖(𝑥) ⊗ 𝜑𝑗(𝑦))𝑡      ,     𝑖, 𝑗 =  0,1,2, … , 𝑛 , 

in which 

𝜑𝑖(𝑥) =  [𝜑0(𝑥), 𝜑1(𝑥),  ···  , 𝜑𝑛(𝑥)]  ,   𝜑𝑗(𝑦) =  [𝜑0(𝑦), 𝜑1(𝑦),  ···  , 𝜑𝑛(𝑦)] .  

are 1D vectors. The weight function in 2D is  𝑤(𝑥, 𝑡) = 𝑤(𝑥)𝑤(𝑦) on the interval [𝑎, 𝑏] × [𝑎, 𝑏]   . 
 

4. The derivation method 
 

By introducing the integral operator 𝑘1 and  𝑘2  defined is  

𝐾1𝑢(𝑥, 𝑦) = ∫ ∫ 𝑘1(𝑥, 𝑦, 𝑧, 𝑠)𝑢(𝑧, 𝑠)𝑑𝑧𝑑𝑠
𝑥

0

𝑦

0

, 

or 

𝐾2𝑢(𝑥, 𝑦) = ∫ ∫ 𝑘2(𝑥, 𝑦, 𝑧, 𝑠)𝑢(𝑧, 𝑠)𝑑𝑧𝑑𝑠.
Ω

𝑦

0

 

 
 

Eqs (1.1) can be written in the following forms   

 

𝑢(𝑥, 𝑦)

= 𝑓(𝑥, 𝑦) + 𝐾1𝑢(𝑥, 𝑦),                                                                                                                       (4.1𝑎) 

or 

𝑢(𝑥, 𝑦)

= 𝑓(𝑥, 𝑦) + 𝐾2𝑢(𝑥, 𝑦),                                                                                                                       (4.1𝑏) 

In order to solve Eqs (4.1), we shall be the SPGM. 

First let's see how SPGM works numerically,  𝑃𝑛𝑚  it is a space of polynomials defined in   

[0,1] × [0,1] with the maximum degree 𝑛𝑚 , 𝜑𝑖(𝑥), 𝜑𝑗(𝑦) are Laguerre polynomials.  As 

𝑃𝑛𝑚

= 𝑠𝑝𝑎𝑛{𝜑0(𝑥)𝜑0(𝑦), ⋯ , 𝜑0(𝑥)𝜑𝑚(𝑦), 𝜑1(𝑥)𝜑0(𝑦), ⋯ , 𝜑1(𝑥)𝜑𝑚(𝑦), ⋯ , 𝜑𝑛(𝑥)𝜑0(𝑦), ⋯ , 𝜑𝑛(𝑥)𝜑𝑚(𝑦)} 

Define the polynomial space as   𝑉𝑛𝑚 = {𝑢(𝑥, 𝑦): 𝑢 ∈ 𝑃𝑛𝑚} . 

Find  𝑢𝑛𝑚 ∈ 𝑉𝑛𝑚 such that Eqs. (4.1) can be written  

(𝑢𝑛𝑚, 𝑣𝑛𝑚)𝑤 = (𝑓, 𝑣𝑛𝑚)𝑤 + (𝐾1𝑢𝑛𝑚, 𝑣𝑛𝑚)𝑤                      (4.2𝑎) 

or 

(𝑢𝑛𝑚, 𝑣𝑛𝑚)𝑤 = (𝑓, 𝑣𝑛𝑚)𝑤 + (𝐾2𝑢𝑛𝑚, 𝑣𝑛𝑚)𝑤                           (4.2𝑏) 
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∀ 𝑣𝑛𝑚 ∈ 𝑃𝑛𝑚  

where  

(𝑢𝑛𝑚, 𝑣𝑛𝑚)𝑤 = ∫ ∫ 𝑢𝑛𝑚(𝑥, 𝑦)𝑣𝑛𝑚(𝑥, 𝑦)𝑤(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑑

𝑐

𝑏

𝑎

 

(𝐾1𝑢𝑛𝑚, 𝑣𝑛𝑚)𝑤 = ∫ ∫ ∫ ∫ 𝑘1(𝑥, 𝑦, 𝑧, 𝑠)𝑢𝑛𝑚(𝑧, 𝑠)
𝑥

0

𝑦

0

𝑑

𝑐

𝑏

𝑎

𝑣𝑛𝑚(𝑥, 𝑦)𝑤(𝑥, 𝑦)𝑑𝑧𝑑𝑠𝑑𝑥𝑑𝑦 

or 

(𝐾2𝑢𝑛𝑚, 𝑣𝑛𝑚)𝑤 = ∫ ∫ ∫ ∫ 𝑘2(𝑥, 𝑦, 𝑧, 𝑠)𝑢𝑛𝑚(𝑧, 𝑠)𝑣𝑛𝑚(𝑥, 𝑦)𝑤(𝑥, 𝑦)𝑑𝑧𝑑𝑠𝑑𝑥𝑑𝑦
Ω

𝑦

0

𝑑

𝑐

𝑏

𝑎

 

Is inner product, the proximate solution is 

𝑢𝑛𝑚(𝑥, 𝑦) = ∑ ∑ 𝛽𝑖𝑗

𝑚

𝑗=0

[𝜑𝑖(𝑥)𝜑𝑗(𝑦) + µ𝑖𝑗 (𝜑𝑖+1(𝑥)𝜑𝑗+1(𝑦))]

𝑛

𝑖=0

      ;    (𝑥, 𝑦)  ∈ [0,1] × [0,1] 

Where the control point 𝛽𝑖𝑗 are undermined constants coefficients, µ𝑖𝑗 is constant chosen as the initial 

conditions and Laguerre polynomial  𝜑𝑖(𝑥), 𝜑𝑗(𝑦)        ;      𝑖 = 0,1,2, ⋯ , 𝑛       ;      𝑗 = 0,1,2, ⋯ , 𝑚 

are used. 

 From Eqs. (4.2) we obtain the following result  

∑ ∑ 𝛽𝑖𝑗

𝑚

𝑗=0

(𝜑𝑖(𝑥)𝜑𝑗(𝑦) + µ𝑖𝑗(𝜑𝑖+1(𝑥)𝜑𝑗+1(𝑦)), 𝜉𝑟(𝑥)𝜉𝜏(𝑦))𝑤 = (𝑓, 𝜉𝑟(𝑥)𝜉𝑒(𝑦))𝑤

𝑛

𝑖=0

+ ∑ ∑ 𝛽𝑖𝑗[𝐾1

𝑚

𝑗=0

(𝜑𝑖(𝑧)𝜑𝑗(𝑠) + µ𝑖𝑗(𝜑𝑖+1(𝑧)𝜑𝑗+1(𝑠))), 𝜉𝑟(𝑥)𝜉𝜏(𝑦)]𝑤 ,

𝑛

𝑖=0

       (4.3𝑎) 

or 

∑ ∑ 𝛽𝑖𝑗

𝑚

𝑗=0

(𝜑𝑖(𝑥)𝜑𝑗(𝑦) + µ𝑖𝑗(𝜑𝑖+1(𝑥)𝜑𝑗+1(𝑦)), 𝜉𝑟(𝑥)𝜉𝜏(𝑦))𝑤 = (𝑓, 𝜉𝑟(𝑥)𝜉𝑒(𝑦))𝑤

𝑛

𝑖=0

+ ∑ ∑ 𝛽𝑖𝑗[𝐾2

𝑚

𝑗=0

(𝜑𝑖(𝑧)𝜑𝑗(𝑠) + µ𝑖𝑗(𝜑𝑖+1(𝑧)𝜑𝑗+1(𝑠))), 𝜉𝑟(𝑥)𝜉𝜏(𝑦)]𝑤

𝑛

𝑖=0

           (4.3𝑏) 

Where 𝜉𝑟(𝑥), 𝜉𝜏(𝑦), 𝑟 = 0,1, ⋯ , 𝑛 , 𝑒 = 0,1, ⋯ , 𝑚 are chepyshev polynomial test function 

corresponding to the weigh function 𝑤(𝑥, 𝑦) =
1

√(1−𝑥2)(1−𝑦2)
, with  𝑖 = 0,1, ⋯ , 𝑛 , 𝑗 = 0,1, ⋯ , 𝑚. 

From Eqs. (4.3) can be get the following matrix forms  

(𝐴 + 𝐵)𝑈𝑖𝑗 =

𝐹                                                                                                                                                     (4.4)  

where, 

 𝑈𝑖𝑗 =

[𝑢0𝑢0, ⋯ , 𝑢𝑜𝑢𝑚, 𝑢1𝑢𝑜, ⋯ , 𝑢1𝑢𝑚, ⋯ , 𝑢𝑛𝑢0, ⋯ , 𝑢𝑛𝑢𝑚]𝑇                                                                (4.5)                                                  
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𝐴(𝑎𝑖𝑗𝑟𝜏)𝑖,𝑗,𝑟,𝜏=0
𝑛𝑚 = (𝜑𝑖(𝑥)𝜑𝑗(𝑦)

+ µ𝑖𝑗(𝜑𝑖+1(𝑥)𝜑𝑗+1(𝑦)), 𝜉𝑟(𝑥)𝜉𝜏(𝑦))𝑤                                                 (4.6) 

 𝐵(𝑏𝑖𝑗𝑟𝜏)𝑖,𝑗,𝑟,𝜏=0
𝑛𝑚 = (𝐾ℓ(𝜑𝑖(𝑧)𝜑𝑗(𝑠) + µ𝑖𝑗(𝜑𝑖+1(𝑧)𝜑𝑗+1(𝑠))), 𝜉𝑟(𝑥)𝜉𝜏(𝑦))𝑤  ,         ℓ = 1,2              

 (4.7)    

  𝐹(𝑓𝑟𝜏)𝑟,𝜏=0
𝑛𝑚 =

(𝑓, 𝜉𝑟(𝑥)𝜉𝜏(𝑦))
𝑤

                                                                                                                     (4.8)  

 

5. Numerical Examples  

    An overall analysis of SPGM performance for a 2D IE solution is based on the absolute error 

values from different methods. In other words, by comparing the results for different numbers of n 

and m; the outcome will give us a clear idea about how correctly and effectively this method works, 

explaining its faithful applicability to similar techniques like 2D-triangular functions [2], 

rationalized Haar functions (RHF) [5], successive approximations method (SAM) [15], 2D-

orthonormal Bernstein collocation method (2D-OBPs) [16], Bernoulli collocation method (BCM) 

[11], and discretization methods [12]. 

Example 5.1: Consider the following linear VIE in 2D [2]: 

𝑢(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) − ∫ ∫ sin(𝑥 − 𝑦 − 𝑧 + 𝑠) 𝑢(𝑧, 𝑠)𝑑𝑧𝑑𝑠

𝑦

0

𝑥

0

, 

where 𝑓(𝑥, 𝑦) = (𝑥 − 𝑦 + 1)𝑐𝑜𝑠(𝑥 + 𝑦) − (𝑥 − 𝑦)𝑐𝑜𝑠(𝑥 − 𝑦) . The exact solution 𝑢(𝑥, 𝑦) =

𝑐𝑜𝑠(𝑥 + 𝑦) . 

The numerical results are compared with the numerical results obtained by using 2D- triangular 

functions [2] in Tables 5.1-5.3. The absolute error, approximate solution and exact solution for 𝑛 =

𝑚 = 4 are plotted in Figure 5.1. 

Example 5.2: Consider the following linear MIE in 2D [13]: 

𝑢(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) + ∫ ∫(𝑥 + 𝑠)𝑢(𝑧, 𝑠)𝑑𝑧𝑑𝑠

1

0

𝑥

0

 

where  𝑓(𝑥, 𝑦) = 𝑥𝑦 −
5

12
𝑥3. The exact solution 𝑢(𝑥, 𝑦) = 𝑥𝑦 . 

The numerical results are compared with the numerical results obtained by using Bernoulli 

collocation method (BCM) [11], successive approximations method (SAM) [15] and rationalized 

Haar functions (RHF) [5] in Tables 5.4-5.6. The absolute error, approximate solution and exact 

solution for 𝑛 = 𝑚 = 4 is are plotted in Figure 5.2. 

Example 5.3: Consider the following linear MIE in 2D [18]: 

𝑢(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) + ∫ ∫(2𝑠 − 1)𝑒𝑧𝑢(𝑧, 𝑠)𝑑𝑧𝑑𝑠

1

0

𝑥

0

 

where  𝑓(𝑥, 𝑦) = 𝑠𝑖𝑛(𝑥) + 𝑦 −
1

6
𝑒𝑥 +

1

6
 . the exact solution 𝑢(𝑥, 𝑦) = 𝑠𝑖𝑛(𝑥) + 𝑦 . The numerical 

results are compared with the numerical results obtained by using 2D-orthonormal Bernstein 
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collocation method (2D-OBPs) [16], Bernoulli collocation method (BCM) [11] in Table 5.7. The 

absolute error, approximate solution and exact solution for 𝑛 = 𝑚 = 8 is are plotted in Figure 5.3. 

Example 5.4: Consider the following linear VIE in 2D [12]: 

𝑢(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) + ∫ ∫(𝑥𝑧 + 𝑐𝑜𝑠 𝑠)𝑢(𝑧, 𝑠)𝑑𝑧𝑑𝑠

𝑥

0

𝑦

0

 

where𝑓(𝑥, 𝑦) = 𝑥 𝑠𝑖𝑛 𝑦 −
1

4
𝑥5 +

1

4
𝑥5 𝑐𝑜𝑠 𝑦 −

1

4
𝑥2 𝑠𝑖𝑛2 𝑦. The exact solution   𝑢(𝑥, 𝑦) = 𝑥 𝑠𝑖𝑛 𝑦 . 

The numerical results are compared with the numerical results obtained by using discretization 

method [12] Table 5.8. The absolute error, approximate solution and exact solution for 𝑛 = 𝑚 = 8 

is are plotted in Figure 5.4.  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

(𝒙, 𝒚) SPGM [𝟑] 

(0,0) 8 × 10−5 0 

(0.1,0.1) 2 × 10−5 1.4575 × 10−2 

(0.2,0.2) 1.4 × 10−4 9.3562 × 10−3 

(0.3,0.3) 3.1 × 10−4 1.7768 × 10−3 

(0.4,0.4) 4 × 10−4 4.2834 × 10−3 

(0.5,0.5) 3.1 × 10−4 4.8953 × 10−4 

(0.6,0.6) 0 3.6187 × 10−2 

(0.7,0.7) 4.3 × 10−4 2.8238 × 10−2 

(0.8,0.8) 7.58 × 10−4 5.0821 × 10−2 

(0.9,0.9) 5.4 × 10−4 7.8802 × 10−2 

(𝒙, 𝒚) SPGM [𝟑] 

(0,0) 0 0 

(0.1,0.1) 0 2.45 × 10−3 

(0.2,0.2) 0 1.59 × 10−3 

(0.3,0.3) 0 2.39 × 10−3 

(0.4,0.4) 0 5.32 × 10−3 

(0.5,0.5) 0 3.00 × 10−4 

(0.6,0.6) 0 1.03 × 10−2 

(0.7,0.7) 0 2.23 × 10−2 

(0.8,0.8) 0 2.91 × 10−2 

(0.9,0.9) 0 2.41 × 10−2 

Table 5.1: Absolute errors at test points 

 (𝑥, 𝑦)  with 𝑛 = 𝑚 = 4  for Example 5.1 

 

Table 5.2: Absolute errors at test points 

(𝑥, 𝑦) with 𝑛 = 𝑚 = 8  for Example 5.1 
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(𝒙, 𝒚) SPGM [𝟑] 

(0,0) 0 0 

(0.1,0.1) 0 6.85 × 10−4 

(0.2,0.2) 1 × 10−5 3.47 × 10−4 

(0.3,0.3) 2 × 10−5 9.94 × 10−4 

(0.4,0.4) 3 × 10−5 3.88 × 10−3 

(0.5,0.5) 3 × 10−5 7.68 × 10−5 

(0.6,0.6) 5 × 10−5 8.37 × 10−3 

(0.7,0.7) 5 × 10−5 7.65 × 10−3 

(0.8,0.8) 4.3 × 10−5 8.70 × 10−3 

(0.9,0.9) 4 × 10−5 1.5 × 10−2 

(𝒙, 𝒚) SPGM 𝑩𝑪𝑴 [𝟏𝟏] 
(0,0) 7.1686 × 10−15 3.2969690 × 10−1 

(0.1,0.1) 0 3.2760781 × 10−1 

(0.2,0.2) 0 3.1576020 × 10−1 

(0.3,0.3) 0 2.9536746 × 10−1 

(0.4,0.4) 0 2.6797218 × 10−1 

(0.5,0.5) 0 2.3534264 × 10−1 

(0.6,0.6) 0 1.9937474 × 10−1 

(0.7,0.7) 0 1.6199934 × 10−1 

(0.8,0.8) 0 1.250947 × 10−1 

(0.9,0.9) 0 9.040599 × 10−2 

Figure 5.1: Plot of the exact solution, approximate solution and max. error for Example 5.1 

 

Table 5.3: Absolute errors at test points 

(𝑥, 𝑦) with 𝑛 = 𝑚 = 16  for Example 5.1 

 

Table 5.4: Absolute errors at test points                        

        (𝑥, 𝑦) with 𝑛 = 𝑚 = 3  for Example 5.2 
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Figure 5.2 : Plot of the exact solution , approximate solution and max. error for Example 5.2 

(𝒙, 𝒚) SPGM 𝑺𝑨𝑴 [𝟏𝟓] 

(0,0) 2.5698 × 10−3 5.196012 × 10−1 

(0.1,0.1) 3.002 × 10−3 5.213247 × 10−1 

(0.2,0.2) 3.502 × 10−3 5.185562 × 10−1 

(0.3,0.3) 4.093 × 10−3 5.164139 × 10−1 

(0.4,0.4) 4.81 × 10−3 5.141450 × 10−1 

(0.5,0.5) 5.68 × 10−3 5.126711 × 10−1 

(0.6,0.6) 6.74 × 10−3 5.102234 × 10−1 

(0.7,0.7) 8.05 × 10−3 5.083669 × 10−1 

(0.8,0.8) 9.65 × 10−3 5.063321 × 10−1 

(0.9,0.9) 1.163 × 10−2 5.044418 × 10−1 

𝒙, 𝒚) SPGM 𝑹𝑯𝑭 [𝟓] 

(0,0) 8.72 × 10−17 2.251543 × 10−1 

(0.1,0.1) 0 2.159587 × 10−1 

(0.2,0.2) 0 2.085641 × 10−1 

(0.3,0.3) 0 1.94871 × 10−1 

(0.4,0.4) 0 1.665021 × 10−1 

(0.5,0.5) 0 1.498517 × 10−1 

(0.6,0.6) 0 1.422590 × 10−1 

(0.7,0.7) 0 1.393651 × 10−1 

(0.8,0.8) 0 1.321355 × 10−1 

(0.9,0.9) 0 1.272933 × 10−1 

Table 5.5: Absolute errors at test points 

(𝑥, 𝑦) with 𝑛 = 𝑚 = 4  for Example 5.2 

 

 

(𝒙, 𝒚) SPGM 𝑹𝑯𝑭 [𝟓] 

(0,0) 8.72 × 10−17 2.251543
× 10−1 

(0.1,0.1) 0 2.159587
× 10−1 

(0.2,0.2) 0 2.085641
× 10−1 

(0.3,0.3) 0 1.94871 × 10−1 

(0.4,0.4) 0 1.665021
× 10−1 

(0.5,0.5) 0 1.498517
× 10−1 

(0.6,0.6) 0 1.422590
× 10−1 

(0.7,0.7) 0 1.393651
× 10−1 

(0.8,0.8) 0 1.321355
× 10−1 

(0.9,0.9) 0 1.272933
× 10−1 

 Table 5.5: Absolute errors at test points 

(𝑥, 𝑦) with 𝑛 = 𝑚 = 4  for Example 5.2 

 

Table 5.6: Absolute errors at test points 

(𝑥, 𝑦) with 𝑛 = 𝑚 = 18  for Example 5.2 

 

 
Table 5.6: Absolute errors at test points 

(𝑥, 𝑦) with 𝑛 = 𝑚 = 18  for Example 5.2 
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(𝒙, 𝒚) SPGM 𝑩𝑪𝑴 [𝟏𝟏] 𝟐𝑫 − 𝑶𝑩𝑷𝒔 [𝟏𝟔] 

(0,0) 1.29 × 10−14 0 1.7590 × 10−10 
(0.1,0.1) 0 6.73360 × 10−8 6.3487 × 10−12 
(0.2,0.2) 0 1.08210 × 10−7 3.6477 × 10−11 
(0.3,0.3) 0 1.07410 × 10−7 2.0662 × 10−10 
(0.4,0.4) 0 6.59240 × 10−8 8.0123 × 10−10 
(0.5,0.5) 0 1.3766 × 10−14 2.69990 × 10−9 
(0.6,0.6) 0 16.52040 × 10−8 7.74040 × 10−9 
(0.7,0.7) 0 1.05080 × 10−7 1.95510 × 10−8 
(0.8,0.8) 0 1.04700 × 10−7 4.46400 × 10−8 
(0.9,0.9) 0 6.44420 × 10−8 9.34810 × 10−8 

(𝒙, 𝒚) SPGM 
n=m=6 

SPGM 
          n=m=8 

[12] 
n=m=6 

(0,0) 2.1808 × 10−14 1.9902 × 10−13 2.38053 × 10−11 
(0.2,0.2) 1 × 10−6 0 4.24890 × 10−9 
(0.4,0.4) 0 0 3.25418 × 10−9 
(0.6,0.6) 0 0 4.26163 × 10−9 
(0.8,0.8) 0 0 1.98141 × 10−8 

(1,1) 0 0 2.69535 × 10−8 

Figure 5.3 : Plot of the exact solution , approximate solution and max. error for Example 5.3 

 
Figure 5.3 : Plot of the exact solution , approximate solution and max. error for Example 5.3 

Table 5.7: Absolute errors at test points (𝑥, 𝑦) with 𝑛 = 𝑚 = 8  for 

Example 5.3 

 

 
Table 5.7: Absolute errors at test points (𝑥, 𝑦) with 𝑛 = 𝑚 = 8  for 

Example 5.3 

 

Table 5.8: Absolute errors at test points (𝑥, 𝑦) for Example 5.4 

 

 
Table 5.8: Absolute errors at test points (𝑥, 𝑦) for Example 5.4 
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6. Conclusion 

        In this work, a spectral Petrov-Galerkin method for solving two-dimensional linear integral 

equations (Volterra and mixed Volterra-Fredholm) was introduced. The present method converts the 

integral equations into matrices, namely blocks. Moreover, it should be noted that in the first example 

of the Volterra equation, a comparison was made between the outcomes of this method with the two-

dimensional method of triangular functions [3]. It was seen that the absolute error is more accurate, 

as shown in Tables 5.1-5.3 and Figure 5.1. Similarly, comparisons were made with the Bernoulli 

approximation method [11], the successive approximation method [15], and the rationalized Haar 

function method [5] for the mixed Volterra-Fredholm equation. The comparison revealed a minimum 

absolute error using the new method, as shown in Tables 5.4-5.6 and Figure 5.2. The new method 

was also compared with the two-dimensional orthogonal Bernstein approximation method [16] for 

another mixed equation. This has shown a higher level of accuracy, as shown in Table 5.7 and Figure 

5.3. Moreover, comparisons were made with the discretization method [12] for the fourth example of 

the Volterra equation, where the new method showed a minimum absolute error, as shown in Table 

5.8 and Figure 5.4. The results illustrated in Tables 5.1-5.8 corroborate the efficiency of the method 

in solving two-dimensional functions of integral equations. 

 

 

 

 

 

Figure 5.4: Plot of the exact solution, approximate solution and max. error for Example 5.4 

 

 
Figure 5.4: Plot of the exact solution, approximate solution and max. error for Example 5.4 

 



H. O. Al-Humedi, S. T. Al-Sarirani  

 

147 

 

7. References 

[1] H. O. Al-Humedi and A. Kadhim Munaty, "The spectral petrov-Galerkin method for solving 

integral equations of the first kind," Turkish Journal of Computer and Mathematics Education 

(TURCOMAT), vol. 12, no. 13, pp. 7856-7865, 

2021.Doi:http://dx.doi.org/10.22075/ijnaa.2022.6074. 

[2] E. Babolian, K. Maleknejad, M. Roodaki, and H. Almasieh, "Two-dimensional triangular 

functions and their applications to nonlinear 2D Volterra–Fredholm integral equations," 

Computers & Mathematics with Applications, vol. 60, no. 6, pp. 1711-1722, 

2010.Doi:https://doi.org/10.1016/j.camwa.2010.07.002. 

[3] Z. Chen and Y. Xu, "The Petrov--Galerkin and Iterated Petrov--Galerkin Methods for Second-

Kind Integral Equations," SIAM Journal on Numerical Analysis, vol. 35, no. 1, pp. 406-434, 

1998.Doi:https://doi.org/10.1137/S0036142996297217. 

[4] E. H. Doha, R. Hafez, and Y. H. Youssri, "Shifted Jacobi spectral-Galerkin method for solving 

hyperbolic partial differential equations," Computers & Mathematics with Applications, vol. 78, 

no. 3, pp. 889-904, 2019.Doi:https://doi.org/10.1016/j.camwa.2019.03.011. 

[5] M. Erfanian and H. Zeidabadi, "Solving two-dimensional nonlinear mixed Volterra Fredholm 

integral equations by using rationalized Haar functions in the complex plane," Journal of 

Mathematical Modeling, vol. 7, no. 4, pp. 399-416, 

2019.Doi:https://doi.org/10.22124/jmm.2019.13987.1300. 

[6] M. Eslahchi, M. Dehghan, and M. Parvizi, "Application of the collocation method for solving 

nonlinear fractional integro-differential equations," Journal of Computational and Applied 

Mathematics, vol. 257, pp. 105-128, 2014.Doi:https://doi.org/10.1016/j.cam.2013.07.044. 

[7] S. Fazeli, G. Hojjati, and H. Kheiri, "A piecewise approximation for linear two-dimensional 

volterra integral equation by chebyshev polynomials," Int. J. Nonlinear Sci, vol. 16, no. 3, pp. 

255-261, 2013.Doi:https://www.researchgate.net/publication/260115266. 

[8] H. Guoqiang, K. Hayami, K. Sugihara, and W. Jiong, "Extrapolation method of iterated 

collocation solution for two-dimensional nonlinear Volterra integral equations," Applied 

mathematics and computation, vol. 112, no. 1, pp. 49-61, 

2000.Doi:https://doi.org/10.1016/S0096-3003(99)00036-3. 

[9] H. Guoqiang and Z. Liqing, "Asymptotic error expansion of two-dimensional Volterra integral 

equation by iterated collocation," Applied Mathematics and Computation, vol. 61, no. 2-3, pp. 

269-285, 1994.Doi: https://doi.org/10.1016/0096-3003(94)90050-7. 

[10] R. Hafez, E. Doha, A. Bhrawy, and D. Baleanu, "Numerical solutions of two-dimensional mixed 

Volterra-Fredholm integral equations via Bernoulli collocation method," Rom. J. Phys, vol. 62, 

no. 111, pp. 1-11, 2017. 

[11] R. Hafez and Y. Youssri, "Jacobi collocation scheme for variable-order fractional reaction-

subdiffusion equation," Computational and Applied Mathematics, vol. 37, pp. 5315-5333, 

2018.Doi: http://dx.doi.org/10.1007/s40314-018-0633-3. 

[12] F. Khan, M. Omar, and Z. Ullah, "Discretization method for the numerical solution of 2D 

Volterra integral equation based on two-dimensional Bernstein polynomial," AIP Advances, vol. 

8, no. 12, 2018.Doi:http://dx.doi.org/10.1063/1.5051113. 

[13] J. Khazaian, N. Parandin, F. Mohammadi Yaghoobi, and N. Karami Kabir, "Numerical Solution 

Two-Dimensional Volterra-Fredholm Integral Equations of the Second Kind with Block-Pulse 

Functions Based on Legendre Polynomials," International Journal of Mathematical Modelling & 

Computations, vol. 12, no. 1 (WINTER), pp. 1-14, 

2022.Doi:https://dorl.net/dor/20.1001.1.22286225.2022.12.1.1.5. 

[14] H. Laib, A. Boulmerka, A. Bellour, and F. Birem, "Numerical solution of two-dimensional linear 

and nonlinear Volterra integral equations using Taylor collocation method," Journal of 

Computational and Applied Mathematics, vol. 417, p. 114537, 

2023.Doi:https://doi.org/10.1016/j.cam.2022.114537. 

[15] S. Micula, "Numerical solution of two-dimensional Fredholm–Volterra integral equations of the 

second kind," Symmetry, vol. 13, no. 8, p. 1326, 2021.Doi:https://doi.org/10.3390/sym13081326. 

[16] F. Mirzaee and N. Samadyar, "Convergence of 2D-orthonormal Bernstein collocation method 

for solving 2D-mixed Volterra–Fredholm integral equations," Transactions of A. Razmadze 

http://dx.doi.org/10.22075/ijnaa.2022.6074
https://doi.org/10.1016/j.camwa.2010.07.002
https://doi.org/10.1137/S0036142996297217
https://doi.org/10.1016/j.camwa.2019.03.011
https://doi.org/10.22124/jmm.2019.13987.1300
https://doi.org/10.1016/j.cam.2013.07.044
https://www.researchgate.net/publication/260115266
https://doi.org/10.1016/S0096-3003(99)00036-3
https://doi.org/10.1016/0096-3003(94)90050-7
http://dx.doi.org/10.1007/s40314-018-0633-3
http://dx.doi.org/10.1063/1.5051113
https://dorl.net/dor/20.1001.1.22286225.2022.12.1.1.5
https://doi.org/10.1016/j.cam.2022.114537
https://doi.org/10.3390/sym13081326


Spectral Petrov-Galerkin...                                                     J. Basrah Res. (Sci.) 50(1), 137 (2024). 

 

148 

 

Mathematical Institute, vol. 172, no. 3, pp. 631-641, 

2018.Doi:https://doi.org/10.1016/j.trmi.2017.09.006. 

[17] P. Mokhtary and F. Ghoreishi, "The L 2-convergence of the Legendre spectral Tau matrix 

formulation for nonlinear fractional integro differential equations," Numerical Algorithms, vol. 

58, pp. 475-496, 2011.Doi:http://dx.doi.org/10.1007/s11075-011-9465-6. 

[18] S. Nemati and Y. Ordokhani, "Numerical solution of two-dimensional nonlinear Volterra 

integral equations by the Legendre polynomials," 

2011.Doi:https://doi.org/10.1016/j.cam.2012.10.021. 

[19] Y. Pan and J. Huang, "Extrapolation method for solving two-dimensional volterral integral 

equations of the second kind," Applied Mathematics and Computation, vol. 367, p. 124784, 

2020.Doi:https://doi.org/10.1016/j.amc.2019.124784. 

[20] J. N. Reddy, An introduction to the finite element method. McGraw-Hill New York, 2005. 

[21] A. Tari, M. Rahimi, S. Shahmorad, and F. Talati, "Solving a class of two-dimensional linear and 

nonlinear Volterra integral equations by the differential transform method," Journal of 

Computational and Applied Mathematics, vol. 228, no. 1, pp. 70-76, 

2009.Doi:http://dx.doi.org/10.1016/j.cam.2008.08.038. 

 
 

 

 

 

 

 

 

https://doi.org/10.1016/j.trmi.2017.09.006
http://dx.doi.org/10.1007/s11075-011-9465-6
https://doi.org/10.1016/j.cam.2012.10.021
https://doi.org/10.1016/j.amc.2019.124784
http://dx.doi.org/10.1016/j.cam.2008.08.038


           Journal of Basrah Researches (Sciences) 50(1), 137 (2024)  

            DOI:  https://doi.org/10.56714/bjrs.50.1.12  

 

*Corresponding author email : hameeda.mezban@uobasrah.edu.iq 

 

 ©2022 College of Education for Pure Science, University 

of Basrah. This is an Open Access Article Under the CC 

by License the CC BY 4.0 license. 

 

          ISSN: 1817-2695 (Print); 2411-524X (Online) 

Online at: https://jou.jobrs.edu.iq 

 

 

 

بعاد من الركن الطيفية لحل المعادلات التكاملية ثنائية الأك  -طريقة بيتروف

 النوع الثاني 

    *الحميدي حميدة عودة السريراني، شهد طالب

 .العراق بصرة، البصرة، الصرفة، جامعةكلية التربية للعلوم   الرياضيات،قسم 

 معلومات البحث الملخص 

ن الهدف فأ(،  SPGMجالركن الطيفي )-بيتروف  طريقةستخدام  أب

فولتيرا   لمعادلات  عددي  حل  اقتراح  هو  البحث  هذا  من  الرئيسي 

المختلطة  فريدهولم التكاملية  -الخطية ثنائية الأبعاد ومعادلات فولتيرا

(VIEs  وMIEs .)توضح  حيث  مثلة  أربع  أوذلك بحل    ، على التوالي

فهي   والخطأ الدقة    ناحية بالطرق الاخرى من    نتائج الطريقة مقارنة  

 . طريقة قوية لحل هذا النوع من المعادلات

     

 2024شباط  27الاستلام             

 2024ايار  23القبول                

 2024حزيران   30النشر                

 المفتاحية الكلمات 

بعاد، طريقة معادلة تكاملية ثنائية الأ

الركن، الطريقة الطيفية،  ج-بيتروف 

متعددات الحدود المتعامدة ثنائية 

 ،بعاد، متعددة الحدود شيبشيفالأ

 . ويرمتعددة الحدود لاك  

 

 

 

 

Citation: S.T. Al-Sarirani, H.O. 

Al-Humedi, J. Basrah Res. 

(Sci.) 50(1), 137 (2024). 

DOI:https://doi.org/10.56714/bj

rs.50.1.12 

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56714/bjrs.50.1.12
https://creativecommons.org/licenses/by/4.0/
https://jou.jobrs.edu.iq/
https://doi.org/10.56714/bjrs.50.1.12
https://doi.org/10.56714/bjrs.50.1.12

