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1. Introduction

The application of non-Newtonian fluids is an important and widespread issue. One of the most
important of these applications is the flow of non-Newtonian viscous elastic fluid in an isoaxial
channel with a porous wall. Because the goal of the application is to reduce the heat generated on the
turbine disk, researchers paid great attention to it. As an example, Dogonchi and Ganji [1] used a
novel technique depending on the Duan-Rach methodology in order to solve the problem of turbine
cooling application. Sepasgozar et al. [2] studied non-Newtonian fluid flow in a porous channel using
the differential transformation method (DTM). Their findings supported the efficacy of their
methodology, with comparisons to numerical approaches demonstrating high agreement.
Mirgolbabaee and colleagues [3] presented Akbari-Ganji's approach for determining the approximate
solutions of the nonlinear equations that describe the flow of a non-Newtonian fluid to the problem
of turbine cooling. A comparative evaluation with the fourth-order Runge-Kutta technique revealed
a strong agreement in their results. Singh and Yadav [4] employed the perturbation method to findthe
approximate solution to the heat transfer and momentum equations of the non-Newtonian fluid flow.
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This study focused on the effect of some parameters, as it showed that the variation between the
Reynolds number and the velocity is direct, and similar between the Prandtl number and the
temperature. Sheikhzadeh et al.[5] applied the least square and Galerkin methods to solve governing
equations of a non-Newtonian laminar fluid flow in a porous bounding wall. The results of the
comparison with the Runge—Kutta method of fourth-order showed a good congruence in addition to
the distinction of the Galerkin method over the least square method in terms of simplicity of steps
and fewer calculations. Akinshilo et al.[6] used the variation iteration and homotopy perturbation
methods to find an approximate solution for a non-Newtonian viscoelastic fluid flow in an
axisymmetric channel. This study discussed the effect of heat generated on the turbine disks during
flow as well as verified the validity of the results of the analytical solutions by comparing them with
the results of numerical methods. Al-Griffi and Al-Saif[7] introduced a new method based on the
homotopy perturbation method and the Yang transform to solve a non-Newtonian viscoelastic fluid
flow in an axisymmetric channel. This study showed the effect of some important parameters on the
governing equations, and it showed a good agreement with the results of numerical methods.

Semi-analytical methods have appeared as the preferred approach for finding analytical
approximations to complex problems containing nonlinear terms [7-14]. This preference arises from
the challenges associated with obtaining exact solutions using conventional analytical techniques, as
well as the accuracy and convergence issues encountered with numerical methods. Consequently, a
significant number of researchers and engineers (as mentioned earlier) have turned to semi-analytical
methods to investigate such problems and gain deeper insights into their intricacies. Among these
methods, the homotopy perturbation method appeared particularly noteworthy, drawing the interest
of numerous scientists and finding application in solving a wide array of complex problems, including
the one under consideration [6]. In 2010, Aminikhah and Hemmatnezhad [15] introduced a refined
version of this approach, termed the new homotopy perturbation method, which was applied to derive
approximate solutions for the quadratic Riccati differential equation. This novel method is discrete
by its simplicity and ease of mathematical computation, making it a popular choice in various studies
[16-20]. The two basic ideas that underpin the method's progression are as follows: first, the first
approximation should be defined as a power series; second, all iterations should be set to zero except
for the initial one. Therefore, it is evident that the power series assumes a pivotal position in the
advancement of the novel homotopy perturbation technique, facilitating the acquisition of
approximate solutions for nonlinear equations in the format of the Taylor expansion.

In the present work, we seek to improve accuracy and convergence in analytic approximation
solutions by using a series that is more effective than the Taylor expansion to create a novel homotopy
perturbation technique. Of all the power series that are accessible, the Chebyshev series stands out as
the most important one since it has several benefits. The orthogonal Chebyshev polynomials on which
this series is built are the building blocks for approximating known functions. Due to the faster rate
of convergence, the Chebyshev series outperforms the Taylor series in terms of efficiency and
accuracy since when the Taylor error moves away from the convergence point, it increases rapidly
[21]. Owing to these special properties, the Chebyshev series has been widely applied in a wide range
of academic studies, acting as a primary or auxiliary tool for addressing nonlinear equations and
yielding very precise approximations. For instance, Hamada[22] introduced a novel approach to
approximate solutions for complex linear/nonlinear systems of point kinematic equations, employing
the first type of shifted Chebyshev series. Arushanyan and Zaletkin [23] elucidated a technique for
resolving canonical second-order ordinary differential equations, grounded on an approximation of
the solution to the Cauchy problem and its derivatives, utilizing the partial sum of the shifted
Chebyshev series. Ali et al.[24] utilized Chebyshev's series to devise a numerical method for tackling
nonlinear integral-differential equations of fractional order. Wang et al.[25] proposed a new
collocation method for solving two-dimensional partial differential equations, leveraging the
localized Chebyshev collocation method to achieve spectral accuracy by computing unknown
functions at each node. Zaletkin[26] relied on the shifted Chebyshev series and a Markov quadrature
formula to devise an approximate technique for solving second-order ordinary differential equations.
Izadi et al. [27] introduced a common approximation method, utilizing the Chebyshev collocation
technique to approximate the space variables of the Berger equation. Zaletkin [28] employed a
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technique that involved the utilisation of shifted Chebyshev series in conjunction with a Markov
quadrature formula in order to solve systems of ordinary differential equations. Duan and Jing [29]
based on shifted Chebyshev polynomials for addressing the initial and boundary value problems
associated with the fractional diffusion equation.

The impetus behind our introduction to this study stems from the pivotal role of the Chebyshev
series, as highlighted in the historical context. Furthermore, current research is centered on advancing
semi-analytical methods to surmount the challenges inherent in these approaches, as well as
addressing the time-consuming nature of numerical methods. These factors collectively motivated us
to devise a novel method aimed at mitigating these challenges and reducing the iteration count
typically encountered when solving nonlinear equations.

So, this study's main accomplishment is the creation of a novel, accurate, and efficient analytical
approximation approach that is used for the first time to calculate an approximate solution to the
current problem. This new method termed the Chebyshev-homotopy perturbation method (CHPM),
is devised by integrating the efficient Chebyshev series with the new homotopy perturbation approach.
The study delves into the effects of Reynolds and Prandtl numbers, along with the power-law index,
on velocity and heat transfer. A comparison with existing methods reported in the literature was
conducted to confirm the efficiency of the novel method, and a perfect agreement was obtained. The
key results obtained through the new method underscore its efficiency, success, and high accuracy
compared to existing methods used to deal with the present problem.

2. Fundamental concepts of the CHPM

The novel method is mainly based on the use of the Chebyshev series in the new homotopy
perturbation technique. In this section, we will mention some basic concepts of the Chebyshev series,
the new homotopy perturbation algorithm, and then discuss our new algorithm for finding
approximate solutions to nonlinear differential equations.

2.1. Chebyshev series

Assume that f(x) is a continuous function in the interval [a, b] € R. Then the the first kind
Chebyshev series of f(x) is given by[30-32]:
2x—b—a)

fx) =224 C (W 1)

where ' sign indicates that the coefficient of C,(x) must be reduced by half, C;(x) = cos(i t) with

— rrc—1 _2 u(P7H0 %) G@)
t = cos™1(x) and Ai—;f_l =
Chebyshev polynomials of the first kind, defined within the interval [—1, 1], can be obtained
through the following recurrence relation:
Ci(x) =2xCi_1(x) — Ci_,(x) ,i=2,3,.., (2)
where Cy(x) =1and C;(x) = x .
Moreover, the finite summation of the powers of x can be employed to obtain it as follows:

_ ol i
Cix) = BZyd (%2, o ®3)
D _ (_q\j pi-2j-1_i_ l—])
wheredj =(-1)/ 2 l__j(}. .
On the contrary, the power of x can be expressed as a finite summation of the first kind
Chebyshev polynomials using the following formula:

xt = Zl_leLz(J) l) Ci—2;(x). (4)

In the present study, the range of x is [0, 1]. Consequently, the recurrence relation was derived
to determine the shifted Chebyshev polynomials T;*(x) of the first kind, utilizing the aforementioned
recurrence relation in Eq. (2), as follows:

T (x) =2Qx = 1) T (x) = T{_,(x),i = 2,3,..., (5)

where Tg(x) = 1and Ty (x) = 2x — 1.

152



Chebyshev-Homotopy ... J. Basrah Res. (Sci.) 50(1), 150 (2024).

We can also express the powers of x as the term of the first kind shifted Chebyshev polynomials
as the following:
x =2 () ©)
The Chebyshev polynomials possess significant mathematical relationships.
2x—-b-a

Letz = — [a,b] € Rand i,j € N U {0} then the following relations are true:
1. The multiplication relation is

Ci(2) 6(2) =5 (Ciaj (@) + Ci(@)). (7)
2. The derivation relat_ion is
~(C(@) = ﬁz}loﬂ Cio1-2(2). ()

3. The integration relation is
b-a (Ci+1(z) _ Ci-1(2)) i>2
4 i+1 i-1 /'’ -

[ Ciz) dx = {=20,(2), i=1. 9

=26, i=

Table 1. The powers of x and the shifted Chebyshev polynomials express one in terms of the

other.
To(x) = 1 1= T5(x)
Ti(x) = 2x - 1 x =2 (T5(0) + Ti ()
T,;(x) = 8x?> — 8x + 1 x2 =%(3T5(X) + 4T (x) + T;(x))
T3(x) = 32x% — 48x? x3 == (10T5(x) + 15T5 (x) + 6T5(x) +
+ 18x-1 «
T3 (x))

1 * * *
T;(x) = 128x* — 256x3 + x* =E(35T0(x)+ 56T (x) + 28T5(x) +
160x* — 32* + 1 8T3(x) + T;(x))

1 * * *
TS (x) = 512x5 — 1280x* + x5 = — (25275 (x) + 2107 (x) + 120T; (x) +
1120x3 — 400x?% + 50x- 1 45T3 (x) + 10T; (x) + TZ(x))

2.2. The new homotopy perturbation method

To elucidate the procedure of this approach, let's suppose that the nonlinear equation in the
formula of operators, and as follows[15-20]:

L(f(x) +R(f() + N(f(x)) +g(x) =0,  x € [a,b], (10)
where N is the nonlinear operator, L and R are the linear operators, and g(x) is a known function.

By employing the principle of homotopy, we obtain:

H(fp) = (1=p) (L(F) = £ @) +p (LIF@) + R(FGO) + N(F ) + 9(0)) =0,
(12)
or

H(f,p) = L(f() = () + pf () +p (R(F@)) + N(F(®)) + g(x)) = 0, (12)
where p € [0,1] is an embedding parameter and f*(x) is an initial approximation of the solution of
Eq.(10). From Eq.(12)

L(f@) = £ = pf* () = p (R(F@) + N(F@) + 9(0)), (13)

fO) = L7 (0) = pL7 (@) = pL7 (R(FG0) + N(F () + 9 (), (14)
Suppose that f(x) = X2, p'u;(x) and £*(x) = X2, ¢;v; (x) then, we obtain
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Y20 pui(x) = LY T2 cvi(x) — pL A (E520 civi(x)) — pL7t (R(Z?io plu;(x)) +
N(ZZo p'us(0) + g(), (15)

Equating the coefficients of the powers of p, we get
% up =L (ER v (X))
pt wy =LY (T2 cvi(x) — LTH(R(ug) + N(up) + g(x)) 16)
p% up; = —L 1 (R(ug, uy) + N(ug,uy)) '
“owy = =LY (R(uo,ug, o Ui—1) + N(ug, Uy, o, ui—q)), =34,
Now, we assume that u; = 0, and find the values of the unknown coefficient c;. Thus, the exact
solution becomes as follows:

f) =up = LHEZo civi(x)). (17)
2.3. The CHPM algorithm

4

p

In order to clarify the novel method's methodology, we shall outline the following stages for its
application:
Step 1: We use the principle of homotopy to Eq.(10), to get

L(FGO) = £ () +pf* () +p (R(FG)) + N(f(0)) + () = 0. (18)
Step 2: Taking the L~ operator to Eq.(18), and we rearrange it to get the following form
fO) = L7(F () = L7 (f* () = pL~* (R(F()) + N(f () + g(x) . (19)

Step 3: Assume that f(x) = X2, p'u;(x) and £*(x) = X 2, c; C;i(z) then, we obtain
Y20 Plui(x) =LY (X 20 ¢ Ci(2) —pL ' (X 2o ¢i Ci(2) —pL~?t (R(Z?io pu;(x)) +
N(ZZo Puy(x) + 9(2)) . (20)
Step 4: By equating the terms on both sides of Eq. (20), which have the same powers p, we obtain:
P’ up =L (B0 ciCi(2)
ph uy =L (X2, 6iCi(2) — LTH(R(uo) + N(up) + g(x))
p*: up = —L_I(R(uo,lh) + N(uo,u1))
ph ou; = —L‘l(R(uO,ul, woUim1) + N(ug, Uy, o ui—1)),  ©=34,...
Step 5: We assume that u; = 0, and find the values of the unknown coefficient c; by equating

the Chebyshev polynomials and solving the resulting system of equations. Therefore, the analytical
solution becomes as follows:

f(x) = up =L XZociCi(2) - (22)

(21)

3. Mathematical model

b4

Discharge Non-Newtonian|viscoelastic flow

755 L

Cooling fluid

"'»...::::: ......... \ Heated disc surface
-._.'::.__.A‘

External gés flow

Fig .1. The diagrammatic(right) illustration of the schematic physical problem (left).
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3.1 Analysing flow

This research examines the problem of cooling the turbine disc which appears on the right in
Fig.1 through the flow of a non-Newtonian viscoelastic fluid where the simultaneous development of
flow and heat transfer are investigated. Fig.1(left) represents the illustration of the physical system
where the r-axis and z-axis are parallel and normal to the surface of the disc, respectively. Atz =
+L is the channel's porous disk. The wall corresponding to the r-axis is externally heated because of
the passage of gas. To cool the heated wall, the non-Newtonian fluid is uniformly injected into the
perforated side from the other wall side. The governing equations of this problem can be written in
cylindrical coordinates for a steady, two-dimensional, axisymmetric, and non-Newtonian fluid flow
as follows:

o(ruy) , 0(ruy) _
65 N ag 0 d d d @
Uy U 10P  1f0My 1o
Urgp TUz5, = B or /3[ or + r(.urr Hoo) + oz ] ' (24)
Oup |\ Oup _ _10P 1[0y 1, Ok
Urgr TU2 %5, = " 5oz ﬁ[ar Nl az]’ (25)
with boundary conditions
u.(r,0) =u,(r,0) =0, u,.(r,+L) = 0, u,(r,+L) = -V, (26)

where wu,. is the r-direction velocity, u, is the z-direction velocity, P is pressure, f is the density,
Urry Urzy Uz @NA p,, are components of the stress matrix, V7 is the injected fluid velocity.

To solve the axisymmetric flow case of the problem shown in Fig.1, it is suitable to clarify a
stream function that satisfies the continuity equation as follows:

w=Vr?fi(x), (27)
where x = % and the velocity components in z-direction and r-direction are defined as

up = f(x) Uy = =2V (x) . (28)
Via using Eq.(27,28) the equations of momentum become [7]:

fi" + 2Refy fi" —k Re(4f{' f{" + 2f{f{") = 0, (29)
with the boundary conditions

where k is the injection Reynolds number and Re is the Reynolds number.
3.2 Analysing heat transfer

The dimensionless energy equation with the viscous squandering in the current problem is as
follows [7]:

pC (u S +u,2) =k VT +9, (31)
ouy T Oou, Juy Oou,
(Z)=Hrr%+#66u7+#zz%+#rz(%+a_t)v (32)

where C, T, k, and @ are the specific heat, temperature, fluid coefficient, and dissipation function,
respectively. By ignoring the influence of squandering, we obtain the non-dimensional equation:

fo'=PrRe(nfi fo+ fif;) =0, n=0234,.., (33)
with boundary conditions

where Pr is the Prandtl number and n is the power-law index.

4. The CHPM's application to the mathematical model

The CHPM technique was used to solve the current boundary value problem in equations
(29, 30, 33, and 34). The primary phases of the new technique are given below:
Step 1: Applying the homotopy property on Egs.(29,33), we get,

" =i +ofi +p(2Refy fi" — k Re(4f{'fi" + 2f{f{"")) =0, (35)
f2”—f2*+Pf2*—P(P7”R€(nf1’f2+ f1f2'))=0’ (36)

155



M. S. Abdul-Wahab, AJ. A. Al-Saif

Step 2: Taking L1 = [0 [ " [o°(.) dx dx dx dx and L3* = [ [~(.) dx dx for both sides of

Egs.(35,36) respectively yields
fi = f1(0) +xf{(0) += f '(0) += f”'(O) + LMD —p LT () — p L1 (2Refy f1”

k Re(4f{'f{" + 2f1f””)), (37)
ﬁ—fxm+xﬁ®)+E%ﬁ}ﬁM?Uﬁ+p5%MRdnﬂﬁ+IUD% (38)
Step 3: Assuming that f; (x) = X2, p'ui(x) , (%) = X2 p'vi(x), fi'(x) = X 2 ¢ T7 (%)

and £ (x) = Zm d T*(x) then, we get
N2 Pl =LA+ T A + LT (ST 6 TY) — p LiNE M TY) -
p L (2Re Zi—o p'u; Zl o P'U"i — k Re(4 2o p'u"i X220 p'u'"i +

2520 plu's 520 P, (39)
Y20 Py =1+xB+ LN (X5 d T) - pLa (X5 di T) +
pLy* (PT Re(n Yito pu'y XiZo p'vi + 220 Py Xi2o Plvli)) , (40)

where A; = f{'(0), A, = f{""(0) and B = £, (0)
Step 4: equaling the terms for Egs.(39,40) which have the same powers of p

2 3
pm{ o =AML (EGT) (41)
0_1+xB+L21(Z d; )
o = E LT — 1 (Reuo ! — k Re(huf wf! + 2uuf™)
' =-L7* (224, T;) + L' (Pr Re(nu 0 Vo + o o)) |
and so on

Step 5: We exchange x, x? and x3 in terms of the Chebyshev polynomials, and then the values
of (A4, A,) and B are found by using the boundary conditions (f{(1) =0, f{(1) = 1) and f,(1) =
0 respectively.

Step 6: We find the values c; by assuming that u; = 0. Therefore, the analytical approximate
solution of f; becomes as follows:

fl—u0=_A1+ A2+L11(Zl o Ci '*), (43)

and 5|m|IarIy, we flnd the values of d; and thus we get the analytical approximate solution of f,
as follows:

fo=vo=1+xB+L;*(T/2d T), (44)

It should be noted that in steps 5 and 6, the relations(Derivation, Multiplication, Integration) that
were mentioned earlier are applied, also, in step 6, the values of ¢; and d; are found by solving a
system of algebraic equations that is constructed depending on T;" coefficients.

5. Results and discussion

The CHPM was used to solve the problem of the turbine disc cooling through a non-Newtonian
fluid flow in the porous wall of the axisymmetric channel Fig. 1. The validity of the results obtained
using this new method has been proven by comparing them with the results of the numerical methods.
Fig. 2 shows a good agreement with the Runge-Kutta method with regard to the velocity f; and
temperature distribution f, for different values of the effective parameters.

The Tables(2-5) prove the high accuracy of the results obtained using this method through the

smallness of the percentage error (E%(x) = |f N (’;) 4 (C”)P M@ o 100) and the average percentage
NM (X
1

error (Eave =0 19, Ey, (ﬁ)) of the velocity and heat distribution compared to other methods. In
all these tables only 1 iteration of CHPM was used, while 34 iterations in LeNN-GNDO-SQP, 10
iterations in DTM, 5 neurons in HNNPSO and 2 iterations in (YTHPM, HPM, VIM, ADM, HAM,
OHAM). The agreement of the analytical results with the numerical results in Fig.2 and the smallness
of errors in Tables 1- 4 show the efficiency of CHPM and enhances confidence in the validity of these
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results. From Figs.3 and 4, we can see that the Reynolds humber(Re) and cross viscosity parameter(k)
have the same effect on velocity since increasing them causes an increase velocity in the z-direction
and the maximum velocity in the r-direction tends to the warm plate (z = 0). Fig.5 shows the effect
of Reynolds number(Re), cross viscosity parameter(k), Prandtl number(pr), and power law index(n)
on the temperature distribution. This figure shows that as they rise, the temperature distribution
decreases.

CHPMRe=1,k=0.01
® NM Re=1,k=0.01
CHPM Re =3,k=0.02
® NM Re=3,k=0.02

0.2 0.4 0.6 0.8 1

X
(@)

CHPMRe=1,k=0.02,pr=1, n=0

® NM Re=1,k=0.02,pr=1, n=0

* CHPMRe=3,k=0.03,pr=0.5,n=2

0.8- O ® NM Re=3,k=0.03,pr=05,n=2
0.6+
0.4+
0.2
0
0

(b)

Fig. 2. Approximate solutions of CHPM Compared to numerical method (NM) for (a) f; and (b) f>.

Table 2. A comparison between the percentage error of CHPM and another method for f;
when Re = 0.5and k = 0.01.

LeNN-GNDO-

x CHPM SOP[33] HNNPSO[34] DTM[2] VIM[6]  HAMI[6]
0 0 0 0 0 0 0
01 0 8.52E-4 2.23E-1 2 57E-1 1.63E-2  3.38E-6
02 0 6.85E-4 1.22E-1 1.56E-1 6.59E-2  3.66E-6
03 0 7.75E-5 4.55E-2 7.66E-2 1.40E-1  4.43E-6
04 0 5.20E-5 6.50E-3 2.00E-2 221E-1  5.47E-6
05 2.13E-7 4.25E-5 1.04E-2 1.49E-2 284E-1  5.43E-6
06 0 5.59E-6 4.63E-2 3.18E-2 3.05E-1  3.92E-6
07 0 2.84E-5 4.12E-2 3.35E-2 262E-1  2.01E-6
08 1.14E-7 8.75E-6 2.65E-2 2.44E-2 1.40E-1  4.43E-7
09 0 4.65E-7 9.00E-3 9.65E-3 7.19E-2 0

1 0 5.62E-10 0 0 3.81E-1 0

157



M. S. Abdul-Wahab, AJ. A. Al-Saif

Table 3.a. A comparison between the average error of CHPM and another method for f;.

LeNN- YTH HNN
Re k clup GNDO- PM PSO H[Z']V' Eg'g"S]
SQP[33] [7] [34] !
0.1 001 2.59E-04 - 3.72E-04 - - -
05 0001 7.21E-08 - - - 257E-03  4.09E-03
05 001 298E-08  159E-04  1.40E-05 4.82E-02 - 1.72E-01
05 01 1.21E-02 - - - - 2.43E-01
1 0001 1.67E-06 - - - 3.77E-02  4.26E-01
1 001 3.11E-06  7.37E-03 - - 8.11E-02 3.38E-01
1 01 3.83E-04 - - - - -
15 001 573E-03  5.19E-02 - - - -
2 001 7.42E-03  2.98E-01 - . ; ;

Table 3.b. A comparison between the average error of CHPM and another method for f;.

Re k CHPM  GM[5] DTM[2] ADM[l] OHAM[36] HAMI[37]
01 001 2.59E-04 - - - -
05 0.001 7.21E-08 3.54E-03 - - -
05 001 2.98E-08 - 5.68E-02 - 2.61E-06
1 001 3.11E-06 - - 3.14E-06 - -
1 0.1  3.83E-04 - - - 1.08E-03  1.84E-03

Table 4. A comparison between the percentage error of CHPM and another method for f,

when Re = 0.5,k = 0.01,pr =1andn = 0.

x CHPM HNNPSO[34] VIM[6] HAMI6]
0 0 0.00E+00 0.00E+00 0.00E+00
0.1 1.66E-07 2.00E-04 7.51E+00 1.24E-06
0.2 0 1.00E-04 1.32E+01 3.64E-06
0.3 6.13E-07 8.00E-04 1.75E+01 8.53E-06
0.4 1.14E-06 2.00E-03 2.07E+01 1.61E-05
05 4.91E-07 3.40E-03 2.30E+01 2.08E-05
0.6 1.28E-06 4.70E-03 2.48E+01 1.22E-05
0.7 1.88E-06 5.80E-03 2.66E+01 1.74E-05
0.8 1.16E-06 6.50E-03 2.84E+01 6.46E-05
0.9 0 9.60E-03 3.06E+01 1.10E-04
1 0 0.00E+00 3.33E+01 0.00E+00
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Table 5.a. A comparison between the average error of CHPM and another method forf,,.

Re k p n CHPM YTHPM[7] HNNPS[34] HPM[6] VIM[6,3]

01 001 07 0 b538E-05 220E-03 - - -

05 0001 1 2 4.83E-06 - - - -

05 001 05 0 1.27E-06 1.43E-03 - - -

05 001 1 0 6.12E-07 650E-04  3.01E-03 - 2.05E+01
1 00l 05 0 144E-05 - - 8.10E-02  7.47E-01
1 001 05 2 132E-05 - - 6.64E-02  8.56E-01
1 002 1 0 485E-06 - - - -

1 01 1 2 176E-04 - - - -

Table 5.b. A comparison between the average error of CHPM and another method for f;.

Re k p n  CHPM GM[5] ADM[1] OHAM[3] HAMI[37]
01 001 07 0 b538E-05 - - - -
05 0001 1 2 483E-06 1.69E-01 - - -
05 001 05 0 1.27E-06 - - - 7.20E-06
05 001 1 0 6.12E-07 - - - 2.31E-05
1 001 05 0 144E-05 - - - -
1 001 05 2 132E-05 - - - -
1 002 1 0 4.85E-06 - 8.12E-06 - -
1 o1 1 2 1.76E-04 - - 2.66E-03  1.39E-03

0.8+

0.6

0.4

0.2+

Re=1 Re=2 Re=3

Re=4]

[—Re=1—Re=2 Re=3 —— Re=4]| | \

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

(a) (b)

Fig .3. The impact of the Reynolds number on the z-direction(a) and r-direction(b) velocity
components for k = 0.01.
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Fig .4. The impact of the injection Reynolds number on the z-direction(a) and r-direction(b)
velocity components for Re = 1.5.
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Fig .5. The impact of the Re, n, pr and k on the temperature distribution components for (a)
k =0.01,pr =0.7and (b) Re=1,n = 3.

6. Convergent analysis of CHPM

In this section, we will examine the convergent analysis of the approximate solution achieved by
CHPM. Consider the system of nonlinear equations (29,33) in the following form:

filx) = G1(f1(x): fz(x))}
f2 (x) Gz(f1(x): fz(x)) ,

where G, and G, are non-linear operators. The solution by the present approach is equivalent to
the following sequence:

(45)

Sn1 = LiZo i = L1 i T{"} | (46)

Kz = X200 = X 120d; T}
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Table 6. Convergence of analytical approximate solutions for f;

Re k al a? ad at 5

a
1 0.01 6.42E-01 8.73E-02 2.08E-02 5.58E-03 5.84E-04
2 0.01 6.29E-01 8.54E-02 3.95E-02 1.09E-02 4.92E-04
3 0.01 6.17E-01 8.22E-02 5.54E-02 1.56E-02 2.29E-04
4 0.01 6.06E-01 7.83E-02 6.85E-02 1.94E-02 1.41E-03
1.5 0.01 6.35E-01 8.65E-02 3.05E-02 8.32E-03 6.23E-04
1.5 0.05 6.34E-01 8.83E-02 3.52E-02 1.03E-02 1.37E-03
1.5 0.1 6.30E-01 9.06E-02 4.38E-02 1.42E-02 2.47E-03
1.5 0.15 6.22E-01 9.22E-02 5.94E-02 2.21E-02 3.31E-03

Table 7. convergence of analytical approximate solutions for f,

1 2 3 4 5

Re k pr n a a a a a
025 001 0.7 0 599E-01 1.54E-02 3.20E-03 1.20E-04 1.11E-04
025 0.01 07 2 6.11E-01 3.35E-02 1.03E-03 3.97E-04 2.22E-04
025 001 07 3 6.17E-01 4.23E-02 1.45E-03 1.02E-03 3.89E-04
25 001 07 0 7.34E-01 1.76E-01 1.19E-02 1.07E-02 3.48E-04
25 001 07 2 800E-01 297E-01 3.77E-02 9.86E-03 5.35E-03
25 001 07 3 8.24E-01 345E-01 5.97E-02 7.61E-03 7.51E-03
1 0 05 3 6.74E-01 1.17E-01 7.15E-03 3.96E-03 1.43E-03
1 015 05 3 6.76E-01 1.19E-01 7.80E-03 4.38E-03 1.64E-03
1 03 05 3 6.83E-01 1.33E-01 1.43E-02 5.12E-03 3.20E-03
1 0 25 3 8.67E-01 4.17E-01 8.30E-02 1.02E-02 8.74E-03
1 015 25 3 870E-01 4.23E-01 8.55E-02 1.11E-02 9.78E-03
1 03 25 3 889E-01 4.65E-01 1.11E-01 1.69E-02 8.61E-03

Theorem 6.1 (Convergence of the problem of the turbine disc cooling)
Let G, and G, are the operators from a Hilbert space H into H and f; (x) and f, (x) are the
analytical solution of equations (29, 33). The approximate solutions Y™ u; = ™, ¢; T;" and
n2 v, = Y12, d; T} are convergent to analytical solutions f; (x), f, (x) respectively when3 0 <
a<1, lugpill € allyll VieNU{0}and30 <y <1, [[vi1ll < yllvill, Vi e Nu{0}.

Proof: Firstly, we will prove that for f; (x),
we want to show that {S,,; }n1=0 IS @ Cauchy sequence,
ISn141 = Snall = lup1all < @llunll < @?llupyqll < -+ < a@™Hlugll < @™ el (47)

Now fornl,ml1 € N,nl1 > ml

1Sn1 — Sl = 1(Sn1 = Sn1—1) + Sn1-1 — Sp1-2) + -+ Sm1+1 — Sml
< ISn1 = Sna—all + 1Sp1—1 = Sna=2ll + - + [[Si1+1 — Small
< a™lugll + @™ Hugll + -+ + @™ lul

< (@™ 4 M2 4 g )|y, || = am1+1ﬂ||u Il (48)
= ol — 1-a 0

Hence, 1lirP Sn1 — Small = 0, it means that {S,,;}n1=0 IS @ Cauchy sequence in the Hilbert
nimil-oco
space H, therefore there exists S € H such that lim S,,; = S, where S = f; (x).

nl-oco

The proof of f, is done in the same way. [
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Established on theorem 6.1, the parameter values o™ must be calculated to achieve convergence
using the following relationship:

lupall
anl > ”u ” ] ”uO” i Ol n]- = 21314'1 e
= 0
0 , otherwise
where a = uyll <1.
lluoll

We can now determine the convergence of the analytical approximate solutions using this
relationship, as Tables 6 and 7 show.

7. Conclusions

In this paper, a novel approach (CHPM) is successfully applied to provide an approximate
analytical solution for the turbine disc cooling problem. The effects of several parameters, including
the injection Reynolds number (Re), the cross viscosity parameter (k), the Prandtl number (Pr), and
the power law index (n), on velocity and temperature distribution are investigated. From the obtained
results, the following conclusions are drawn:

e Increasing the Reynolds number leads to an increase in the velocity value with an increase in the
curvature of the temperature distribution and a decrease in its value.

e The velocity reaches its highest value in the channel's centre with low Reynolds numbers.

e Increasing the cross viscosity leads to an increase in the velocity value, but a decrease in the
temperature distribution.

e Increasing the Prandtl number and the power law index leads to a decrease in the temperature
distribution.

e CHPM has a good convergence as shown in Tables(6,7) and a high accuracy compared to other
methods as clear in Tables(2-5).

The results obtained affirm the validity of the new method, which is characterized by reduced
iteration, agreement with previous studies, minimal errors, and excellent convergence. As a result, it
can be effectively utilized to investigate more complex fluid flow problems and other application
model problems that hold significant real-world relevance.

8. References

[1] A.S. Dogonchi, D.D. Ganji, "Investigation of heat transfer for cooling turbine disks with a non-
Newtonian fluid flow using DRA," Case Stud. Therm. Eng., vol. 6, pp. 40-51,
2015.Doi:https://doi.org/10.1016/j.csite.2015.06.002

[2] S.Sepasgozar, M. Faraji, P. Valipour, "Application of differential transformation method (DTM)
for heat and mass transfer in a porous channel," Propuls. Power Res., vol. 6, pp. 41-48,
2017.Doi:https://doi.org/10.1016/j.jppr.2017.01.001

[3] H. Mirgolbabaee, S.T. Ledari, M. Sheikholeslami, D.D. Ganji, "Semi-analytical investigation
of momentum and heat transfer of a non-Newtonian fluid flow for specific turbine cooling
application using AGM," Int. J. Appl. Comput. Math. 3(Suppl 1), S1463-S1475,
2017.Doi:https://doi.org/10.1007/s40819-017-0416-3

[4] N. Singh, R. Yadav, "Investigation of heat transfer of non-Newtonian fluid in the presence of a
porous wall,” Int. J. Eng. Technol. Manag. Res. 4, pp. 7492, 2017.
Doi:https://doi.org/10.5281/zenodo.1140081

[5] G.A. Sheikhzadeh, M. Mollamahdi, M. Abbaszadeh, "Analytical study of flow field and heat
transfer of a non-Newtonian fluid in an axisymmetric channel with a permeable wall," J. Comput.
Appl. Res. 7, pp. 161-173, 2018.Doi:https://doi.org/10.22061/jcarme.2017.2003.1174

[6] A.T. Akinshilo, M. Sanusi, M.G. Sobamowo, A.E. Olorunnisola, "Thermal performance
analysis of non - Newtonian fluid transport through turbine discs," Heat Transfer, vol. 51, no.
1, pp. 451-469, Jan 2021.Doi:https://doi.org/10.1002/htj.22315

162


https://doi.org/10.1016/j.csite.2015.06.002
https://doi.org/10.1016/j.jppr.2017.01.001
https://doi.org/10.1007/s40819-017-0416-3
https://d1wqtxts1xzle7.cloudfront.net/55668407/10_IJETMR17_A12_149-libre.pdf?1517295171=&response-content-disposition=inline%3B+filename%3DINVESTIGATION_OF_HEAT_TRANSFER_OF_NON_NE.pdf&Expires=1715020919&Signature=GMDqk4Fmz0yJwuc6-OLNm6y-SMSkhep1WtkW-S0k63CSuLFYsFE6bXmdMUEw1IbE4UkKRUlFydMcYrqIqwP0nND7oHMJMB5nj2rqNABj1lxIvJfu4T3o6M2XJRn2mVniKDlKHZ6yS0TDhlPWuBRAfNOompZV0RvHKQstDJJ5p05sfba3zj3jFh~8oLBBynNAM8-gSXUcBESnZBmWcpDHFUjlzkb8i3VFOlZUde9u6pPKx~wjG4UFLucE01L5ZlhqVXQdC~UAqTRulGOFF2nG4vrEjS24Re50aK5AtMo-a9ovUmnAai8cxoLuSiAVnoypHYaV7lusl3MEF27Ot5h~fQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/55668407/10_IJETMR17_A12_149-libre.pdf?1517295171=&response-content-disposition=inline%3B+filename%3DINVESTIGATION_OF_HEAT_TRANSFER_OF_NON_NE.pdf&Expires=1715020919&Signature=GMDqk4Fmz0yJwuc6-OLNm6y-SMSkhep1WtkW-S0k63CSuLFYsFE6bXmdMUEw1IbE4UkKRUlFydMcYrqIqwP0nND7oHMJMB5nj2rqNABj1lxIvJfu4T3o6M2XJRn2mVniKDlKHZ6yS0TDhlPWuBRAfNOompZV0RvHKQstDJJ5p05sfba3zj3jFh~8oLBBynNAM8-gSXUcBESnZBmWcpDHFUjlzkb8i3VFOlZUde9u6pPKx~wjG4UFLucE01L5ZlhqVXQdC~UAqTRulGOFF2nG4vrEjS24Re50aK5AtMo-a9ovUmnAai8cxoLuSiAVnoypHYaV7lusl3MEF27Ot5h~fQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://doi.org/10.22061/jcarme.2017.2003.1174
https://doi.org/10.1002/htj.22315

Chebyshev-Homotopy ... J. Basrah Res. (Sci.) 50(1), 150 (2024).

[7] T.AJ. Al-Griffi, A.-S.J. Al-Saif, "Yang transform-homotopy perturbation method for solving a
non-Newtonian viscoelastic fluid flow on the turbine disk,” Z. Angew. Math. Mech.,
£202100116, 2022.Doi:https://doi.org/10.1002/zamm.202100116

[8] A.S.J. Al-Saif, M.S. Abdul-Wahab, "A new technique for simulation the Zakharov-Kuznetsov
equation,” J. of Adv. Math., vol. 14, no. 2, pp. 7912-7920,
2018.Doi:https://doi.org/10.24297/jam.v14i2.7559

[9] A.S.J. Al-Saif, M.S. Abdul-Wahab, "Application of new simulation scheme for the nonlinear
biological population model,” Num. Com. Meth. Sci. Eng., vol. 1, no. 2, pp. 89-99,
2019.Doi:http://dx.doi.org/10.18576/ncmsel/010204

[10] Umesh, M. Kumar, "Approximate solution of singular 1\VPs of Lane-Emden type and error
estimation via advanced Adomian decomposition method,"” J. Appl. Math. Comput., vol. 66, pp.
527-542, 2021.Doi:https://doi.org/10.1007/s12190-020-01444-2

[11] A.SJ. Al-Saif, T.AJ. Al-Griffi, "Analytical simulation for transient natural convection in a
horizontal cylindrical concentric annulus," J. Appl. Comput. Mech., vol. 7, no. 2, pp. 621-637,
2021.Doi:https://doi.org/10.22055/JACM.2020.35278.2617

[12] T.AJ. Al-Griffi, A.S.J. Al-Saif, "Akbari-Ganji homotopy perturbation method for analyzing
the pulsatile blood flow in tapered stenosis arteries under the effect of magnetic field together
with the impact of mass and heat transfer," J. Comput. Appl. Mech., vol. 53, no. 4, pp. 543-
570, 2022.Doi:https://doi.org/10.22059/JCAMECH.2022.348399.757

[13] Y.A. Abdulameer, A.S.J. Al-Saif, "A well-founded analytical technique to solve 2D viscous
flow between slowly expanding or contracting walls with weak permeability," J. Adv. Res. Fluid
Mech. Therm. Sci., vol. 97, no. 2, pp. 39-56,
2022.Doi:https://doi.org/10.37934/arfmts.97.2.3956

[14] A.K. Al-Jaberil, M.S. Abdul-Wahab, R.H. Buti, "A new approximate method for solving linear
and nonlinear differential equation systems," AIP Conf. Proc., vol. 2398, no. 1, p. 060082,
2022.Doi:https://doi.org/10.1063/5.0094138

[15] H. Aminikhah, M. Hemmatnezhad, "An efficient method for quadratic Riccati differential
equation,” Commun. Nonlinear Sci. Numer. Simulat., vol. 15, pp. 835-839,
2010.Doi:https://doi.org/10.1016/j.cnsns.2009.05.009

[16] M.R. Gad-Allah, T.M. Elzaki, "Application of new homotopy perturbation method for solving
partial differential equations," J. Comput. Theor. Nanosci., vol. 15, no. 2, pp. 500-508,
2018.Doi:https://doi.org/10.1166/jctn.2018.6725

[17] D.K. Maurya, R. Singh, Y.K. Rajoria, "A mathematical model to solve the Burgers-Huxley
equation by using new homotopy perturbation method," Int. J. Math., Eng. and Manage. Sci.,
vol. 4, no. 6, pp. 1483-1495, 2019.Doi:https://dx.doi.org/10.33889/IIMEMS.2019.4.6-117

[18] R. Kumar, A.K. Singh, S.S. Yadav, "New homotopy perturbation method for analytical solution
of telegraph equation,"” Turk. J. Comput. Math. Educ. (TURCOMAT), vol. 12, no. 12, pp. 2144-
2155, 2021.Doi:https://doi.org/10.17762/turcomat.v12i12.7760

[19] B. Seethalakshmi, V. Ananthaswamy, S. Narmatha, "Application of new homotopy perturbation
method in solving a simple predator prey model with rich dynamics," Adv. and Appl. Math. Sci.,
vol. 21, no. 4, pp. 2015-2025, 2022.

[20] K. Pal, V. G. Gupta, H. Singh, V. Pawar, "Enlightenment Of Heat Diffusion Using New
Homotopy Perturbation Method,” J. Appl. Sci. Eng.,vol. 27, no. 3, pp. 2213-
2216,2023.Doi:http://dx.doi.org/10.6180/jase.202403 27(3).0007

[21] J. Wu, Y. Zhang, L. Chen, Z. Luo, "A Chebyshev interval method for nonlinear dynamic systems
under uncertainty,” App. Math. Modell, wvol. 37, no. 6, pp. 4578-4591,
2013.Doi:https://doi.org/10.1016/j.apm.2012.09.073

[22] Y. M. Hamada, "A new accurate numerical method based on shifted Chebyshev series for
nuclear reactor dynamical systems,” Sci. Technol. Nucl. Install, vol. 15, ID7105245,
2018.Doi:https://doi.org/10.1155/2018/7105245

[23] O. B. Arushanyan, S. F. Zaletkin, "On some analytic method for approximate solution of
systems of second order ordinary differential equations,” Moscow Univ. Math. Bull, vol. 74, no.
3, pp. 127-130, 2019.Doi:https://doi.org/10.3103/S0027132219030057

163


https://doi.org/10.1002/zamm.202100116
doi:%20https://doi.org/10.24297/jam.v14i2.7559
http://dx.doi.org/10.18576/ncmsel/010204
https://doi.org/10.1007/s12190-020-01444-2
https://doi.org/10.22055/jacm.2020.35278.2617
https://doi.org/10.22059/jcamech.2022.348399.757
https://doi.org/10.37934/arfmts.97.2.3956
https://doi.org/10.1063/5.0094138
https://doi.org/10.1016/j.cnsns.2009.05.009
https://doi.org/10.1166/jctn.2018.6725
https://dx.doi.org/10.33889/IJMEMS.2019.4.6-117
https://doi.org/10.17762/turcomat.v12i12.7760
http://dx.doi.org/10.6180/jase.202403_27(3).0007
https://doi.org/10.1016/j.apm.2012.09.073
https://doi.org/10.1155/2018/7105245
https://doi.org/10.3103/S0027132219030057

M. S. Abdul-Wahab, AJ. A. Al-Saif

[24] K.K.Ali, M. A. Abd El Salam, E. M. Mohamed, B. Samet, S. Kumar, M. S. Osman, "Numerical
solution for generalized nonlinear fractional integro-differential equations with linear functional
arguments using Chebyshev series," Adv. Difference Equations, vol. 2020, no. 1, pp. 1-23,
2020.Doi:https://doi.org/10.1186/513662-020-02951-z

[25] F. Wang, Q. Zhao, Z. Chen, C. M. Fan, "Localized Chebyshev collocation method for solving
elliptic partial differential equations in arbitrary 2D domains," Appl. Math. Comput., vol. 397,
pp. 1-13, 2021.Doi:https://doi.org/10.1016/j.amc.2020.125903

[26] S. F. Zaletkin, "Approximate integration of ordinary differential equations using Chebyshev
series with precision control,” Matem. Mod., vol. 34, no. 6, pp. 53-74,
2022.Doi:https://doi.org/10.20948/mm-2022-06-04

[27] M. 1zadi, S. Yiizbasi, D. Baleanu, "Taylor—Chebyshev approximation technique to solve the 1D
and 2D nonlinear Burgers equations,” Math. Sci., vol. 16, no. 4, pp. 459-471,
2022.Doi:https://doi.org/10.1007/s40096-021-00433-1

[28] S. F. Zaletkin, "Approximate integration of ordinary differential equations using the Chebyshev
series with precision control,” Math. Models Comput. Simul., vol. 15, pp. 34-46,
2023.Doi:https://doi.org/10.1134/S2070048223010155

[29] J. Duan, L. Jing, "The solution of the time-space fractional diffusion equation based on the
Chebyshev collocation method," Indian J. Pure Appl. Math.,
2023.Doi:https://doi.org/10.1007/s13226-023-00495-y

[30]J. C. Mason, D. C. Handscomb, "Chebyshev Polynomials,” Chapman and Hall/CRC,
2002.Doi:https://doi.org/10.1201/9781420036114

[31] M. H. Mudde, "Chebyshev Approximation,” University of Groningen, Netherlands, Faculty of
Science and Engineering, 2017.

[32] H. C. Thacher Jr, "Conversion of a power to a series of Chebyshev polynomials,” Commun.
ACM, vol. 7, no. 3, pp. 181-182, 1964.Doi:https://doi.org/10.1145/363958.363998

[33] N. A. Khan, M. Sulaiman, P. Kumam, F. K. Alarfaj, "Application of Legendre polynomials
based neural networks for the analysis of heat and mass transfer of a non-Newtonian fluid in a
porous channel,” Adv. Continuous Discrete Mod., vol. 2022, no. 1, pp. 1-32,
2022.Doi:https://doi.org/10.1186/513662-022-03676-X

[34] R. Mirzaei, M. Ghalambaz, A. Noghrehabadi, "Study of the flow and heat transfer of a
viscoelastic fluid using hybrid neural network-particle swarm optimization (HNNPSO)," J.
Therm Eng., vol. 7, no. 4, pp. 791-805, 2021.Doi:https://doi.org/10.18186/thermal.929636

[35] F. Shakeri, A. Abbasi, M. Naeimaei, A. Yekrangi, A. Kolahdooz, "Variational iteration method
for the heat transfer of a Non-Newtonian fluid flow in an axisymmetric channel with a porous
wall," World Appl. Sci. J., vol. 16, pp. 26-30, 2012.

[36] F. Mabood, W. A. Khan, A. 1. Ismail, "Optimal homotopy asymptotic method for flow and heat
transfer of a viscoelastic fluid in an axisymmetric channel with a porous wall," PLoS One, vol.
8, no. 12, pp. 1-8, 2013.Doi:https://doi.org/10.1371/journal.pone.0083581

[37] M. Esmaeilpour, G. Domairry, N. Sadoughi, A. G. Davodi, "Homotopy analysis method for the
heat transfer of a non-Newtonian fluid flow in an axisymmetric channel with a porous wall,"
Commun. Nonlinear Sci. Numer. Simulat., vol. 15, no. 9, pp. 2424-2430,
2010.Doi:https://doi.org/10.1016/j.cnsns.2009.10.004

164


https://doi.org/10.1186/s13662-020-02951-z
https://doi.org/10.1016/j.amc.2020.125903
https://doi.org/10.20948/mm-2022-06-04
https://doi.org/10.1007/s40096-021-00433-1
https://doi.org/10.1134/S2070048223010155
https://doi.org/10.1007/s13226-023-00495-y
https://doi.org/10.1201/9781420036114
https://doi.org/10.1145/363958.363998
https://doi.org/10.1186/s13662-022-03676-x
https://doi.org/10.18186/thermal.929636
https://doi.org/10.1371/journal.pone.0083581
https://doi.org/10.1016/j.cnsns.2009.10.004

U Journal of Basrah Researches (Sciences) 50(1), 150 (2024)
&2/ DOI: https://doi.org/10.56714/bjrs.50.1.13

i ad) JUE g 38 A Al Jhlatial) il Y- 48,
oS o R e Adgigdl) p8 JAU»«J‘ (gl

) Ao pla ) e Sl gl 4 rlua desa

é\fl\ ‘aJ..a.\M ‘BJ..A.\S\&M\A ‘33‘)..43\ e}ﬂ@)ﬂ\&.\ﬁ“ﬂ\_\mg)ﬂeﬂé

ailal) Gag) cila glae
sl e il il A ol s 48 ke i Caad) 13 i 5 2024 Gl 07 AdLuY)
i Oy sl e B a8 die b)) pall da s @i o e 2024 '3 Jsl
bkt o ) il i) disle o saaal) Ayl 2024 0= 30 oA
e Aa il 48 Hhall il 4 )lhe ey Candipnd Al alasiuly
Gl 8 Goaall Ll alasiuly lede Jpeanll 3 i) gl dalidal) Gilalgl)

LS 5 s L8 5 jedal G A3y Hhall (Baa (pe ST AGLLY o

Aoy LSy GRSl e o AL 5 Jalpall eyl s ¢ R 2 stsesll R b

(il s oy 5 cabliall A 500 Aabeay Gl gy o) Bla clpall &5 ‘fﬂf}m SR s

28l il le Jgemnl) o Sl gl S5 G () 5l O Al A sl

AR A Jat Aadiiall 5 A 3kl e 38y ST As i)

b At oY) oy JOEN ngi ol o 33 iiion: S, Abdul-
\ieliS s 3l \wahab, AJ. A. Al-Saif., J.

Basrah Res. (Sci.) 50 (1),

150 (2024).
DOI:https://doi.org/10.56714

/bjrs.50.1.13

“Corresponding author email : eduppg.mohammed.sabah@uobasrah.edu.iq

G) ©2022 College of Education for Pure Science, University of ISSN: 1817-2695 (Print); 2411-524X (Online)
@ Basrah. This is an Open Access Article Under the CC by line at: https://jou.jobrs.edu.ig
&Y License the CC BY 4.0 license.



https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56714/bjrs.50.1.13
mailto:eduppg.mohammed.sabah@uobasrah.edu.iq
https://creativecommons.org/licenses/by/4.0/
https://jou.jobrs.edu.iq/
https://doi.org/10.56714/bjrs.50.1.13
https://doi.org/10.56714/bjrs.50.1.13

