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In this investigation, a new method for studying the 

effect of non-Newtonian fluid on the flow and 

temperature distribution when cooling the turbine disk 

is presented. The new method is based on the homotopy 

perturbation method developed with the Chebyshev 

series. The results of the proposed method were 

compared with the results obtained using numerical 

methods in previous literature to ensure the validity of 

the method, as it showed good agreement. The effect of 

several physical parameters on flow velocity and 

temperature diffusion, such as the Reynolds number, 

cross viscosity parameter, Prandtl number, and power 

law, was explored. The results obtained using the 

proposed method were more accurate than other 

methods used to solve the current problem. Moreover, 

figures and error tables show the new method's efficacy 

and efficiency. 
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1. Introduction 

The application of non-Newtonian fluids is an important and widespread issue. One of the most 

important of these applications is the flow of non-Newtonian viscous elastic fluid in an isoaxial 

channel with a porous wall. Because the goal of the application is to reduce the heat generated on the 

turbine disk, researchers paid great attention to it. As an example, Dogonchi and Ganji [1] used a 

novel technique depending on the Duan-Rach methodology in order to solve the problem of turbine 

cooling application. Sepasgozar et al. [2] studied non-Newtonian fluid flow in a porous channel using 

the differential transformation method (DTM). Their findings supported the efficacy of their 

methodology, with comparisons to numerical approaches demonstrating high agreement. 

Mirgolbabaee and colleagues [3] presented Akbari-Ganji's approach for determining the approximate 

solutions of the nonlinear equations that describe the flow of a non-Newtonian fluid to the problem 

of turbine cooling. A comparative evaluation with the fourth-order Runge-Kutta technique revealed 

a strong agreement in their results. Singh and Yadav [4] employed the perturbation method to findthe 

approximate solution to the heat transfer and momentum equations of the non-Newtonian fluid flow. 
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This study focused on the effect of some parameters, as it showed that the variation between the 

Reynolds number and the velocity is direct, and similar between the Prandtl number and the 

temperature. Sheikhzadeh et al.[5] applied the least square and Galerkin methods to solve governing 

equations of a non-Newtonian laminar fluid flow in a porous bounding wall. The results of the 

comparison with the Runge–Kutta method of fourth-order showed a good congruence in addition to 

the distinction of the Galerkin method over the least square method in terms of simplicity of steps 

and fewer calculations. Akinshilo et al.[6] used the variation iteration and homotopy perturbation 

methods to find an approximate solution for a non-Newtonian viscoelastic fluid flow in an 

axisymmetric channel. This study discussed the effect of heat generated on the turbine disks during 

flow as well as verified the validity of the results of the analytical solutions by comparing them with 

the results of numerical methods. Al-Griffi and Al-Saif[7] introduced a new method based on the 

homotopy perturbation method and the Yang transform to solve a non-Newtonian viscoelastic fluid 

flow in an axisymmetric channel. This study showed the effect of some important parameters on the 

governing equations, and it showed a good agreement with the results of numerical methods. 

Semi-analytical methods have appeared as the preferred approach for finding analytical 

approximations to complex problems containing nonlinear terms [7-14]. This preference arises from 

the challenges associated with obtaining exact solutions using conventional analytical techniques, as 

well as the accuracy and convergence issues encountered with numerical methods. Consequently, a 

significant number of researchers and engineers (as mentioned earlier) have turned to semi-analytical 

methods to investigate such problems and gain deeper insights into their intricacies. Among these 

methods, the homotopy perturbation method appeared particularly noteworthy, drawing the interest 

of numerous scientists and finding application in solving a wide array of complex problems, including 

the one under consideration [6]. In 2010, Aminikhah and Hemmatnezhad [15] introduced a refined 

version of this approach, termed the new homotopy perturbation method, which was applied to derive 

approximate solutions for the quadratic Riccati differential equation. This novel method is discrete 

by its simplicity and ease of mathematical computation, making it a popular choice in various studies 

[16–20]. The two basic ideas that underpin the method's progression are as follows: first, the first 

approximation should be defined as a power series; second, all iterations should be set to zero except 

for the initial one. Therefore, it is evident that the power series assumes a pivotal position in the 

advancement of the novel homotopy perturbation technique, facilitating the acquisition of 

approximate solutions for nonlinear equations in the format of the Taylor expansion. 

In the present work, we seek to improve accuracy and convergence in analytic approximation 

solutions by using a series that is more effective than the Taylor expansion to create a novel homotopy 

perturbation technique. Of all the power series that are accessible, the Chebyshev series stands out as 

the most important one since it has several benefits. The orthogonal Chebyshev polynomials on which 

this series is built are the building blocks for approximating known functions. Due to the faster rate 

of convergence, the Chebyshev series outperforms the Taylor series in terms of efficiency and 

accuracy since when the Taylor error moves away from the convergence point, it increases rapidly 

[21]. Owing to these special properties, the Chebyshev series has been widely applied in a wide range 

of academic studies, acting as a primary or auxiliary tool for addressing nonlinear equations and 

yielding very precise approximations. For instance, Hamada[22] introduced a novel approach to 

approximate solutions for complex linear/nonlinear systems of point kinematic equations, employing 

the first type of shifted Chebyshev series. Arushanyan and Zaletkin [23] elucidated a technique for 

resolving canonical second-order ordinary differential equations, grounded on an approximation of 

the solution to the Cauchy problem and its derivatives, utilizing the partial sum of the shifted 

Chebyshev series. Ali et al.[24] utilized Chebyshev's series to devise a numerical method for tackling 

nonlinear integral-differential equations of fractional order. Wang et al.[25] proposed a new 

collocation method for solving two-dimensional partial differential equations, leveraging the 

localized Chebyshev collocation method to achieve spectral accuracy by computing unknown 

functions at each node. Zaletkin[26] relied on the shifted Chebyshev series and a Markov quadrature 

formula to devise an approximate technique for solving second-order ordinary differential equations. 

Izadi et al. [27] introduced a common approximation method, utilizing the Chebyshev collocation 

technique to approximate the space variables of the Berger equation. Zaletkin [28] employed a 
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technique that involved the utilisation of shifted Chebyshev series in conjunction with a Markov 

quadrature formula in order to solve systems of ordinary differential equations. Duan and Jing [29] 

based on shifted Chebyshev polynomials for addressing the initial and boundary value problems 

associated with the fractional diffusion equation. 

The impetus behind our introduction to this study stems from the pivotal role of the Chebyshev 

series, as highlighted in the historical context. Furthermore, current research is centered on advancing 

semi-analytical methods to surmount the challenges inherent in these approaches, as well as 

addressing the time-consuming nature of numerical methods. These factors collectively motivated us 

to devise a novel method aimed at mitigating these challenges and reducing the iteration count 

typically encountered when solving nonlinear equations. 

So, this study's main accomplishment is the creation of a novel, accurate, and efficient analytical 

approximation approach that is used for the first time to calculate an approximate solution to the 

current problem. This new method termed the Chebyshev-homotopy perturbation method (CHPM), 

is devised by integrating the efficient Chebyshev series with the new homotopy perturbation approach. 

The study delves into the effects of Reynolds and Prandtl numbers, along with the power-law index, 

on velocity and heat transfer. A comparison with existing methods reported in the literature was 

conducted to confirm the efficiency of the novel method, and a perfect agreement was obtained. The 

key results obtained through the new method underscore its efficiency, success, and high accuracy 

compared to existing methods used to deal with the present problem. 

2. Fundamental concepts of the CHPM 

The novel method is mainly based on the use of the Chebyshev series in the new homotopy 

perturbation technique. In this section, we will mention some basic concepts of the Chebyshev series, 

the new homotopy perturbation algorithm, and then discuss our new algorithm for finding 

approximate solutions to nonlinear differential equations. 

2.1. Chebyshev series 

Assume that 𝑓(𝑥) is a continuous function in the interval [𝑎, 𝑏] ∈ ℝ. Then the the first kind 

Chebyshev series of 𝑓(𝑥) is given by[30-32]: 

𝑓(𝑥) = ∑ 𝐴𝑖 𝐶𝑖 (
2𝑥−𝑏−𝑎

𝑏−𝑎
)′ ∞

 𝑖=0  ,        (1) 

where ′ sign indicates that the coefficient of 𝐶0(𝑥) must be reduced by half, 𝐶𝑖(𝑥) = cos(𝑖 𝑡)  with 

𝑡 = cos−1(𝑥) and  𝐴𝑖 =
2

𝜋
∫

𝑢(
𝑏+𝑎

2
+
𝑏−𝑎

2
 𝑥) 𝐶𝑖(𝑥)

√1−𝑥2
𝑑𝑥

1

−1
  . 

Chebyshev polynomials of the first kind, defined within the interval [−1, 1], can be obtained 

through the following recurrence relation: 

 𝐶𝑖(𝑥) = 2𝑥 𝐶𝑖−1(𝑥) − 𝐶𝑖−2(𝑥)  , 𝑖 = 2,3,…,      (2) 

       where 𝐶0(𝑥) = 1 and 𝐶1(𝑥) = 𝑥 . 

Moreover, the finite summation of the powers of 𝑥 can be employed to obtain it as follows: 

𝐶𝑖(𝑥) = ∑ 𝑑 𝑗
(𝑖)
𝑥𝑖−2𝑗

⌊
𝑖

2
⌋

𝑗=0
,         (3) 

      where 𝑑 𝑗
(𝑖)
= (−1)𝑗 2𝑖−2𝑗−1

𝑖

𝑖−𝑗
 (
𝑖 − 𝑗
𝑗
). 

On the contrary, the power of 𝑥  can be expressed as a finite summation of the first kind 

Chebyshev polynomials using the following formula: 

𝑥𝑖 = 21−𝑖∑ (
𝑖
𝑗
) 𝐶𝑖−2𝑗(𝑥)

′ ⌊
𝑖

2
⌋

𝑗=0
.        (4)  

In the present study, the range of 𝑥 is [0, 1]. Consequently, the recurrence relation was derived 

to determine the shifted Chebyshev polynomials 𝑇𝑖
∗(𝑥)  of the first kind, utilizing the aforementioned 

recurrence relation in Eq. (2), as follows:  

𝑇𝑖
∗(𝑥) = 2(2𝑥 − 1) 𝑇𝑖−1

∗ (𝑥) − 𝑇𝑖−2
∗ (𝑥), 𝑖 = 2,3,… ,        (5) 

      where 𝑇0
∗(𝑥) = 1 and 𝑇1

∗(𝑥) = 2𝑥 − 1. 
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We can also express the powers of 𝑥 as the term of the first kind shifted Chebyshev polynomials 

as the following: 

𝑥𝑖 = ∑ 21−2𝑖  (
2𝑖
𝑖 − 𝑗

)𝑇∗𝑗(𝑥)
′  𝑖
𝑗=0   .       (6) 

The Chebyshev polynomials possess significant mathematical relationships. 

       Let 𝑧 =
2𝑥−𝑏−𝑎

𝑏−𝑎
 , [𝑎, 𝑏] ∈ ℝ and 𝑖, 𝑗 ∈ ℕ ∪ {0} then the following relations are true: 

1. The multiplication relation is 

𝐶𝑖(𝑧) 𝐶𝑗(𝑧) =
1

2
(𝐶𝑖+𝑗(𝑧) + 𝐶|𝑖−𝑗|(𝑧)).         (7) 

2. The derivation relation is 

𝑑

𝑑𝑥
(𝐶𝑖(𝑧)) =

4𝑖

𝑏−𝑎
∑  𝐶𝑖−1−2𝑗(𝑧)
′  ⌊

𝑖−1

2
⌋

𝑗=0
.        (8) 

3. The integration relation is 

∫𝐶𝑖(𝑧) 𝑑𝑥 =

{
 
 

 
 
𝑏−𝑎

4
(
𝐶𝑖+1(𝑧)

𝑖+1
−
𝐶𝑖−1(𝑧)

𝑖−1
) ,       𝑖 ≥ 2

𝑏−𝑎

8
𝐶2(𝑧),                             𝑖 = 1 

𝑏−𝑎

2
𝐶1(𝑧),                             𝑖 = 0

  .     (9) 

 

Table 1. The powers of 𝑥 and the shifted Chebyshev polynomials express one in terms of the 

other. 

𝑇0
∗(𝑥) = 1  1 =  𝑇0

∗(𝑥)  

𝑇1
∗(𝑥) = 2𝑥 − 1  𝑥 =

1

2
(𝑇0

∗(𝑥) + 𝑇1
∗(𝑥))  

𝑇2
∗(𝑥)  =  8𝑥2  −  8𝑥 +  1  𝑥2 =

1

8
(3𝑇0

∗(𝑥) +  4𝑇1
∗(𝑥)  + 𝑇2

∗(𝑥))  

𝑇3
∗(𝑥)  =  32𝑥3  −  48𝑥2  

+  18𝑥 –  1 
𝑥3  =

1

32
 (10𝑇0

∗(𝑥) +  15𝑇1
∗(𝑥) +  6𝑇2

∗(𝑥)  +

 𝑇3
∗(𝑥))  

𝑇4
∗(𝑥)  =  128𝑥4  −  256𝑥3  +
 160𝑥2  −  32𝑥  +  1  

𝑥4  =
1

128
(35𝑇0

∗(𝑥) +  56𝑇1
∗(𝑥) +  28𝑇2

∗(𝑥)  +

 8𝑇3
∗(𝑥) + 𝑇4

∗(𝑥))  

𝑇5
∗ (𝑥)  =  512𝑥5  −  1280𝑥4  +
 1120𝑥3  −  400𝑥2  +  50𝑥 –  1  

𝑥5  =
1

512
(252𝑇0

∗(𝑥) + 210𝑇1
∗(𝑥) + 120𝑇2

∗(𝑥) +

45𝑇3
∗(𝑥) + 10𝑇4

∗(𝑥) + 𝑇5
∗(𝑥))  

 

2.2. The new homotopy perturbation method 

To elucidate the procedure of this approach, let's suppose that the nonlinear equation in the 

formula of operators, and as follows[15-20]: 

       𝐿(𝑓(𝑥)) + 𝑅(𝑓(𝑥)) + 𝑁(𝑓(𝑥)) + 𝑔(𝑥) = 0 ,         𝑥 ∈ [𝑎, 𝑏],    (10) 

where  𝑁 is the nonlinear operator, 𝐿 and 𝑅 are the linear operators, and 𝑔(𝑥) is a known function.  

By employing the principle of homotopy, we obtain: 

      𝐻(𝑓, 𝑝) = (1 − 𝑝) (𝐿(𝑓(𝑥)) − 𝑓∗(𝑥)) + 𝑝 (𝐿(𝑓(𝑥)) + 𝑅(𝑓(𝑥)) + 𝑁(𝑓(𝑥)) + 𝑔(𝑥)) = 0  ,

 (11) 

or 

      𝐻(𝑓, 𝑝) = 𝐿(𝑓(𝑥)) − 𝑓∗(𝑥) + 𝑝𝑓∗(𝑥) + 𝑝 (𝑅(𝑓(𝑥)) + 𝑁(𝑓(𝑥)) + 𝑔(𝑥)) = 0,  (12) 

where 𝑝 ∈ [0,1] is an embedding parameter and 𝑓∗(𝑥) is an initial approximation of the solution of 

Eq.(10). From Eq.(12) 

       𝐿(𝑓(𝑥)) = 𝑓∗(𝑥) − 𝑝𝑓∗(𝑥) − 𝑝 (𝑅(𝑓(𝑥)) + 𝑁(𝑓(𝑥)) + 𝑔(𝑥)),    (13) 

𝑓(𝑥) = 𝐿−1(𝑓∗(𝑥)) − 𝑝𝐿−1(𝑓∗(𝑥)) − 𝑝𝐿−1 (𝑅(𝑓(𝑥)) + 𝑁(𝑓(𝑥)) + 𝑔(𝑥)),   (14) 

Suppose that 𝑓(𝑥) = ∑  𝑝𝑖𝑢𝑖(𝑥)
∞
𝑖=0  and 𝑓∗(𝑥) = ∑ 𝑐𝑖𝑣𝑖(𝑥)

∞
𝑖=0  then, we obtain 
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∑  𝑝𝑖𝑢𝑖(𝑥)
∞
𝑖=0 = 𝐿−1(∑ 𝑐𝑖𝑣𝑖(𝑥)

∞
𝑖=0 ) − 𝑝𝐿−1(∑ 𝑐𝑖𝑣𝑖(𝑥)

∞
𝑖=0 ) − 𝑝𝐿−1 (𝑅(∑  𝑝𝑖𝑢𝑖(𝑥)

∞
𝑖=0 ) +

𝑁(∑  𝑝𝑖𝑢𝑖(𝑥)
∞
𝑖=0 ) + 𝑔(𝑥)),         (15) 

Equating the coefficients of the powers of 𝑝, we get 

𝑝0:     𝑢0 = 𝐿
−1(∑ 𝑐𝑖𝑣𝑖(𝑥)

∞
𝑖=0 )                                                                                

𝑝1:     𝑢1 = −𝐿
−1(∑ 𝑐𝑖𝑣𝑖(𝑥)

∞
𝑖=0 ) − 𝐿−1(𝑅(𝑢0) + 𝑁(𝑢0) + 𝑔(𝑥))                 

𝑝2:     𝑢2 = −𝐿
−1(𝑅(𝑢0, 𝑢1) + 𝑁(𝑢0, 𝑢1))                                                          

𝑝𝑖:      𝑢𝑖 = −𝐿
−1(𝑅(𝑢0, 𝑢1, … , 𝑢𝑖−1) + 𝑁(𝑢0, 𝑢1, … , 𝑢𝑖−1)),      𝑖 = 3,4,…}

 
 

 
 

 ,  (16)  

Now, we assume that 𝑢1  =  0, and find the values of the unknown coefficient 𝑐𝑖. Thus, the exact 

solution becomes as follows: 

𝑓(𝑥) = 𝑢0 = 𝐿
−1(∑ 𝑐𝑖𝑣𝑖(𝑥)

∞
𝑖=0 ).        (17) 

2.3. The CHPM algorithm 

In order to clarify the novel method's methodology, we shall outline the following stages for its 

application: 

Step 1: We use the principle of homotopy to Eq.(10), to get 

𝐿(𝑓(𝑥)) − 𝑓∗(𝑥) + 𝑝𝑓∗(𝑥) + 𝑝 (𝑅(𝑓(𝑥)) + 𝑁(𝑓(𝑥)) + 𝑔(𝑥)) = 0.   (18) 

Step 2: Taking the 𝐿−1 operator to Eq.(18), and we rearrange it to get the following form 

𝑓(𝑥) = 𝐿−1(𝑓∗(𝑥)) − 𝑝𝐿−1(𝑓∗(𝑥)) − 𝑝𝐿−1 (𝑅(𝑓(𝑥)) + 𝑁(𝑓(𝑥)) + 𝑔(𝑥)) .  (19) 

Step 3: Assume that 𝑓(𝑥) = ∑  𝑝𝑖𝑢𝑖(𝑥)
∞
𝑖=0  and 𝑓∗(𝑥) = ∑ 𝑐𝑖  𝐶𝑖(z)

 ∞
 𝑖=0  then, we obtain 

∑  𝒑𝒊𝒖𝒊(𝒙)
∞
𝒊=𝟎 = 𝑳−𝟏(∑ 𝒄𝒊 𝑪𝒊(𝐳)

 ∞
 𝒊=𝟎 ) − 𝒑𝑳−𝟏(∑ 𝒄𝒊 𝑪𝒊(𝐳)

 ∞
 𝒊=𝟎 ) − 𝒑𝑳−𝟏 (𝑹(∑  𝒑𝒊𝒖𝒊(𝒙)

∞
𝒊=𝟎 ) +

𝑵(∑  𝒑𝒊𝒖𝒊(𝒙)
∞
𝒊=𝟎 ) + 𝒈(𝒙)) .        (20)  

Step 4: By equating the terms on both sides of Eq. (20), which have the same powers 𝑝, we obtain: 

𝑝0:     𝑢0 = 𝐿
−1(∑ 𝑐𝑖𝐶𝑖(z)

∞
𝑖=0 )                                                                                

𝑝1:     𝑢1 = −𝐿
−1(∑ 𝑐𝑖𝐶𝑖(z)

∞
𝑖=0 ) − 𝐿−1(𝑅(𝑢0) + 𝑁(𝑢0) + 𝑔(𝑥))                 

𝑝2:     𝑢2 = −𝐿
−1(𝑅(𝑢0, 𝑢1) + 𝑁(𝑢0, 𝑢1))                                                          

𝑝𝑖:     𝑢𝑖 = −𝐿
−1(𝑅(𝑢0, 𝑢1, … , 𝑢𝑖−1) + 𝑁(𝑢0, 𝑢1, … , 𝑢𝑖−1)),      𝑖 = 3,4,… }

 
 

 
 

.  (21)  

Step 5: We assume that 𝑢1  =  0, and find the values of the unknown coefficient 𝑐𝑖 by equating 

the Chebyshev polynomials and solving the resulting system of equations. Therefore, the analytical 

solution becomes as follows: 

f(x) = u0 = L
−1(∑ ciCi(z)

∞
i=0 ) .       (22) 

3. Mathematical model 

 

Fig .1. The diagrammatic(right) illustration of the schematic physical problem (left). 
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3.1 Analysing flow 

This research examines the problem of cooling the turbine disc which appears on the right in 

Fig.1 through the flow of a non‐Newtonian viscoelastic fluid where the simultaneous development of 

flow and heat transfer are investigated. Fig.1(left) represents the illustration of the physical system 

where the r‐axis and z‐axis are parallel and normal to the surface of the disc, respectively. At 𝑧 =
+𝐿 is the channel's porous disk. The wall corresponding to the r-axis is externally heated because of 

the passage of gas. To cool the heated wall, the non-Newtonian fluid is uniformly injected into the 

perforated side from the other wall side. The governing equations of this problem can be written in 

cylindrical coordinates for a steady, two-dimensional, axisymmetric, and non-Newtonian fluid flow 

as follows: 
𝜕(𝑟 𝑢𝑟)

𝜕𝑟
+
𝜕(𝑟 𝑢𝑧)

𝜕𝑧
= 0,         (23) 

𝑢𝑟
𝜕𝑢𝑟

𝜕𝑟
+ 𝑢𝑧

𝜕𝑢𝑟

𝜕𝑧
= −

1

𝛽

𝜕𝑃

𝜕𝑟
+

1

𝛽
[
𝜕𝜇𝑟𝑟

𝜕𝑟
+
1

𝑟
(𝜇𝑟𝑟 − 𝜇𝜃𝜃) +

𝜕𝜏𝑟𝑧

𝜕𝑧
] ,    (24) 

𝑢𝑟
𝜕𝑢𝑧

𝜕𝑟
+ 𝑢𝑧

𝜕𝑢𝑧

𝜕𝑧
= −

1

𝛽

𝜕𝑃

𝜕𝑧
+

1

𝛽
[
𝜕𝜇𝑧𝑟

𝜕𝑟
+
1

𝑟
𝜇𝑟𝑧 +

𝜕𝜇𝑧𝑧

𝜕𝑧
] ,     (25) 

       with boundary conditions 

𝑢𝑟(𝑟, 0) = 𝑢𝑧(𝑟, 0) = 0, 𝑢𝑟(𝑟, +𝐿) = 0,  𝑢𝑧(𝑟, +𝐿) = −𝑉 ,    (26) 

where 𝑢𝑟 is the r-direction velocity,  𝑢𝑧 is the 𝑧-direction velocity, P is pressure, 𝛽 is the density, 

𝜇𝑟𝑟, 𝜇𝑟𝑧, 𝜇𝑧𝑟 and 𝜇𝑧𝑧 are components of the stress matrix, 𝑉 is the injected fluid velocity.  

To solve the axisymmetric flow case of the problem shown in Fig.1, it is suitable to clarify a 

stream function that satisfies the continuity equation as follows: 

𝜔 = 𝑉𝑟2 𝑓1(𝑥) ,         (27) 

      where 𝑥 =
𝑧

𝐿
 and the velocity components in 𝑧-direction and 𝑟-direction are defined as 

𝑢𝑟 =
𝑉𝑟

𝐿
𝑓1
′(𝑥) , 𝑢𝑧 = −2𝑉𝑓1(𝑥) .       ( 28) 

Via using Eq.(27,28) the equations of momentum become [7]: 

𝑓1
′′′′ + 2𝑅𝑒𝑓1 𝑓1

′′′ − 𝑘 𝑅𝑒(4𝑓1
′′𝑓1

′′′ + 2𝑓1
′𝑓1
′′′′) = 0 ,     (29) 

with the boundary conditions  

𝑓1(0) = 𝑓1
′(0) = 𝑓1

′(1) = 0, 𝑓
1
(1) = 1,       (30) 

where 𝑘 is the injection Reynolds number and 𝑅𝑒 is the Reynolds number. 

3.2 Analysing heat transfer 

The dimensionless energy equation with the viscous squandering in the current problem is as 

follows [7]: 

𝜌 𝐶 (𝑢𝑟
𝜕𝑇

𝜕𝑟
+ 𝑢𝑟

𝜕𝑇

𝜕𝑟
) = �̇� ∇2𝑇 + ∅,       (31) 

∅ = 𝜇𝑟𝑟
𝜕𝑢𝑟

𝜕𝑟
+ 𝜇𝜃𝜃

𝑢𝑟

𝑟
+ 𝜇𝑧𝑧

𝜕𝑢𝑧

𝜕𝑧
+ 𝜇𝑟𝑧 (

𝜕𝑢𝑟

𝜕𝑧
+
𝜕𝑢𝑧

𝜕𝑟
) ,     (32) 

where 𝐶, 𝑇, �̇�, and ∅ are the specific heat, temperature, fluid coefficient, and dissipation function, 

respectively. By ignoring the influence of squandering, we obtain the non-dimensional equation: 

𝑓2
′′ − 𝑃𝑟 𝑅𝑒(𝑛 𝑓1

′ 𝑓2 + 𝑓1𝑓2
′) = 0,     𝑛 = 0,2,3,4,… ,      (33) 

with boundary conditions  

𝑓2(0) = 1,  𝑓2(1) = 0,         (34) 

where 𝑃𝑟 is the Prandtl number and 𝑛 is the power-law index. 

4. The CHPM's application to the mathematical model 

The CHPM technique was used to solve the current boundary value problem in equations            

(29, 30, 33, and 34). The primary phases of the new technique are given below: 

Step 1: Applying the homotopy property on Eqs.(29,33), we get, 

𝑓1
′′′′ − 𝑓1

∗ + 𝑝𝑓1
∗ + 𝑝(2𝑅𝑒𝑓1 𝑓1

′′′ − 𝑘 𝑅𝑒(4𝑓1
′′𝑓1

′′′ + 2𝑓1
′𝑓1
′′′′)) = 0 ,   (35) 

𝑓2
′′ − 𝑓2

∗ + 𝑝𝑓2
∗ − 𝑝(𝑃𝑟 𝑅𝑒(𝑛 𝑓1

′ 𝑓2 + 𝑓1𝑓2
′)) = 0 ,     (36) 
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Step 2: Taking 𝐿1
−1 = ∫ ∫ ∫ ∫ (. )

𝑥

0

𝑥

0

𝑥

0

𝑥

0
𝑑𝑥 𝑑𝑥 𝑑𝑥 𝑑𝑥 and 𝐿2

−1 = ∫ ∫ (. )
𝑥

0

𝑥

0
𝑑𝑥 𝑑𝑥 for both sides of 

Eqs.(35,36) respectively yields 

𝑓1 = 𝑓1(0) + 𝑥𝑓1
′(0) +

𝑥2

2
𝑓1
′′(0) +

𝑥3

6
𝑓1
′′′(0) + 𝐿1

−1(𝑓1
∗) − 𝑝 𝐿1

−1(𝑓1
∗) − 𝑝 𝐿1

−1(2𝑅𝑒𝑓1 𝑓1
′′′ −

𝑘 𝑅𝑒(4𝑓1
′′𝑓1

′′′ + 2𝑓1
′𝑓1
′′′′)),         (37)  

𝑓2 = 𝑓2(0) + 𝑥𝑓2
′(0) + 𝐿2

−1(𝑓2
∗) − 𝑝𝐿2

−1(𝑓2
∗) + 𝑝𝐿2

−1(𝑃𝑟 𝑅𝑒(𝑛 𝑓1
′ 𝑓2 + 𝑓1𝑓2

′)) ,  (38) 

 Step 3: Assuming that 𝑓1(𝑥) = ∑  𝑝𝑖𝑢𝑖(𝑥)
∞
𝑖=0  , 𝑓2(𝑥) = ∑  𝑝𝑖𝑣𝑖(𝑥)

∞
𝑖=0 , 𝑓1

∗(𝑥) = ∑ 𝑐𝑖 𝑇𝑖
∗(𝑥)

 𝑚1
 𝑖=0  

and 𝑓2
∗(𝑥) = ∑ 𝑑𝑖  𝑇𝑖

∗(𝑥)
 𝑚2
 𝑖=0  then, we get 

∑  𝑝𝑖𝑢𝑖
∞
𝑖=0 =

𝑥2

2
A1 +

𝑥3

6
A2 + 𝐿1

−1(∑ 𝑐𝑖 𝑇𝑖
∗ 𝑚1

 𝑖=0 ) − 𝑝 𝐿1
−1(∑ 𝑐𝑖 𝑇𝑖

∗ 𝑚1
 𝑖=0 ) −  

𝑝 𝐿1
−1 (2𝑅𝑒∑  𝑝𝑖𝑢𝑖

∞
𝑖=0  ∑  𝑝𝑖𝑢′′′𝑖

∞
𝑖=0 − 𝑘 𝑅𝑒(4∑  𝑝𝑖𝑢′′𝑖

∞
𝑖=0 ∑  𝑝𝑖𝑢′′′𝑖

∞
𝑖=0 +

2∑  𝑝𝑖𝑢′𝑖
∞
𝑖=0 ∑  𝑝𝑖𝑢′′′′𝑖

∞
𝑖=0 )),    (39) 

∑  𝑝𝑖𝑣𝑖
∞
𝑖=0 = 1 + 𝑥 𝐵 + 𝐿2

−1(∑ 𝑑𝑖  𝑇𝑖
∗ 𝑚2

 𝑖=0 ) − 𝑝𝐿2
−1(∑ 𝑑𝑖  𝑇𝑖

∗ 𝑚2
 𝑖=0 ) +  

𝑝𝐿2
−1 (𝑃𝑟 𝑅𝑒(𝑛 ∑  𝑝𝑖𝑢′𝑖

∞
𝑖=0  ∑  𝑝𝑖𝑣𝑖

∞
𝑖=0 + ∑  𝑝𝑖𝑢𝑖

∞
𝑖=0  ∑  𝑝𝑖𝑣′𝑖

∞
𝑖=0 )) ,   (40) 

where A1 = 𝑓1
′′(0), A2 = 𝑓1

′′′(0) and B = 𝑓2
′(0) 

Step 4: equaling the terms for Eqs.(39,40) which have the same powers of 𝑝 

𝑝0 :   {
𝑢0 =

𝑥2

2
A1 +

𝑥3

6
A2 + 𝐿1

−1(∑ 𝑐𝑖 𝑇𝑖
∗ 𝑚1

 𝑖=0 )

𝑣0 = 1 + 𝑥 𝐵 + 𝐿2
−1(∑ 𝑑𝑖  𝑇𝑖

∗ 𝑚2
 𝑖=0 )         

  ,     (41) 

𝑝1 :   {
𝑢1 = − 𝐿1

−1(∑ 𝑐𝑖  𝑇𝑖
∗ 𝑚1

 𝑖=0 ) − 𝐿1
−1(2𝑅𝑒 𝑢0 𝑢0

′′′ − 𝑘 𝑅𝑒(4𝑢0
′′ 𝑢0

′′′ + 2𝑢0
′ 𝑢0

′′′′))

𝑣1 = −𝐿2
−1(∑ 𝑑𝑖  𝑇𝑖

∗ 𝑚2
 𝑖=0 ) + 𝐿2

−1(𝑃𝑟 𝑅𝑒(𝑛 𝑢′0 𝑣0 + 𝑢0 𝑣
′
0))                           

 , (42) 

and so on. 

Step 5: We exchange 𝑥, 𝑥2 and 𝑥3 in terms of the Chebyshev polynomials, and then the values 

of (A1, A2) and 𝐵 are found by using the boundary conditions (𝑓1
′(1) = 0, 𝑓1

′(1) = 1) and 𝑓2(1) =
0 respectively. 

Step 6: We find the values 𝑐𝑖 by assuming that 𝑢1  =  0. Therefore, the analytical approximate 

solution of 𝑓1 becomes as follows: 

𝑓1 = 𝑢0 =
𝑥2

2
A1 +

𝑥3

6
A2 + 𝐿1

−1(∑ 𝑐𝑖 𝑇𝑖
∗ 𝑚1

 𝑖=0 ) ,      (43) 

and similarly, we find the values of 𝑑𝑖 and thus we get the analytical approximate solution of 𝑓2 

as follows: 

𝑓2 = 𝑣0 = 1 + 𝑥 𝐵 + 𝐿2
−1(∑ 𝑑𝑖  𝑇𝑖

∗ 𝑚2
 𝑖=0 ) ,       (44) 

It should be noted that in steps 5 and 6, the relations(Derivation, Multiplication, Integration) that 

were mentioned earlier are applied, also, in step 6, the values of 𝑐𝑖 and 𝑑𝑖 are found by solving a 

system of algebraic equations that is constructed depending on 𝑇𝑖
∗ coefficients. 

5. Results and discussion 

The CHPM was used to solve the problem of the turbine disc cooling through a non-Newtonian 

fluid flow in the porous wall of the axisymmetric channel Fig. 1. The validity of the results obtained 

using this new method has been proven by comparing them with the results of the numerical methods. 

Fig. 2 shows a good agreement with the Runge-Kutta method with regard to the velocity 𝑓1 and 

temperature distribution 𝑓2 for different values of the effective parameters.  

The Tables(2-5) prove the high accuracy of the results obtained using this method through the 

smallness of the percentage error (𝐸%(𝑥) = |
𝑓𝑁𝑀(𝑥)−𝑓𝐶𝐻𝑃𝑀(𝑋)

𝑓𝑁𝑀(𝑥)
| × 100) and the average percentage 

error (𝐸ave =
1

11
∑ 𝐸% (

𝑖

10
)10

𝑖=0 ) of the velocity and heat distribution compared to other methods. In 

all these tables only 1 iteration of CHPM was used, while 34 iterations in LeNN-GNDO-SQP, 10 

iterations in DTM, 5 neurons  in HNNPSO and 2 iterations in (YTHPM, HPM, VIM, ADM, HAM, 

OHAM). The agreement of the analytical results with the numerical results in Fig.2 and the smallness 

of errors in Tables 1- 4 show the efficiency of CHPM and enhances confidence in the validity of these 
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results. From Figs.3 and 4, we can see that the Reynolds number(𝑅𝑒) and cross viscosity parameter(𝑘) 

have the same effect on velocity since increasing them causes an increase velocity in the z-direction 

and the maximum velocity in the r-direction tends to the warm plate (𝑧 = 0). Fig.5 shows the effect 

of  Reynolds number(𝑅𝑒), cross viscosity parameter(𝑘), Prandtl number(𝑝𝑟), and power law index(𝑛) 

on the temperature distribution.  This figure shows that as they rise, the temperature distribution 

decreases. 

 

Fig. 2. Approximate solutions of CHPM Compared to numerical method (NM) for (a) 𝑓1 and (b) 𝑓2.  

 

 

 

Table 2. A comparison between the percentage error of CHPM and another method for 𝑓1 

when 𝑅𝑒 = 0.5 and  𝑘 = 0.01. 

𝑥 CHPM 
LeNN-GNDO- 

SQP[33] 
HNNPSO[34] DTM[2] VIM[6] HAM[6] 

0 0 0 0 0 0 0 

0.1 0 8.52E-4 2.23E-1 2.57E-1 1.63E-2 3.38E-6 

0.2 0 6.85E-4 1.22E-1 1.56E-1 6.59E-2 3.66E-6 

0.3 0 7.75E-5 4.55E-2 7.66E-2 1.40E-1 4.43E-6 

0.4 0 5.20E-5 6.50E-3 2.00E-2 2.21E-1 5.47E-6 

0.5 2.13E-7 4.25E-5 1.04E-2 1.49E-2 2.84E-1 5.43E-6 

0.6 0 5.59E-6 4.63E-2 3.18E-2 3.05E-1 3.92E-6 

0.7 0 2.84E-5 4.12E-2 3.35E-2 2.62E-1 2.01E-6 

0.8 1.14E-7 8.75E-6 2.65E-2 2.44E-2 1.40E-1 4.43E-7 

0.9 0 4.65E-7 9.00E-3 9.65E-3 7.19E-2 0 

1 0 5.62E-10 0 0 3.81E-1 0 

 

 

     (a)        (b) 
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Table 3.a. A comparison between the average error of CHPM and another method for 𝑓1. 

𝑅𝑒 𝑘 
CHP

M 

LeNN-

GNDO- 

SQP[33] 

YTH

PM 

[7] 

HNN

PSO 

[34] 

HPM 

[6] 

VIM 

[6,35] 

0.1 0.01 2.59E-04 - 3.72E-04 - - - 

0.5 0.001 7.21E-08 - - - 2.57E-03 4.09E-03 

0.5 0.01 2.98E-08 1.59E-04 1.40E-05 4.82E-02 - 1.72E-01 

0.5 0.1 1.21E-02 - - - - 2.43E-01 

1 0.001 1.67E-06 - - - 3.77E-02 4.26E-01 

1 0.01 3.11E-06 7.37E-03 - - 8.11E-02 3.38E-01 

1 0.1 3.83E-04 - - - - - 

1.5 0.01 5.73E-03 5.19E-02 - - - - 

2 0.01 7.42E-03 2.98E-01 - - - - 

 

 

 

Table 3.b. A comparison between the average error of CHPM and another method for 𝑓1. 

𝑅𝑒 𝑘 CHPM GM[5] DTM[2] ADM[1] OHAM[36] HAM[37] 

0.1 0.01 2.59E-04 - -  - - 

0.5 0.001 7.21E-08 3.54E-03 -  - - 

0.5 0.01 2.98E-08 - 5.68E-02  - 2.61E-06 

1 0.01 3.11E-06 - - 3.14E-06 - - 

1 0.1 3.83E-04 - - - 1.08E-03 1.84E-03 

 

 

Table 4. A comparison between the percentage error of CHPM and another method for 𝑓2 

when 𝑅𝑒 = 0.5, 𝑘 = 0.01, 𝑝𝑟 = 1 and 𝑛 = 0. 

𝑥 CHPM HNNPSO[34] VIM[6] HAM[6] 

0 0 0.00E+00 0.00E+00 0.00E+00 

0.1 1.66E-07 2.00E-04 7.51E+00 1.24E-06 

0.2 0 1.00E-04 1.32E+01 3.64E-06 

0.3 6.13E-07 8.00E-04 1.75E+01 8.53E-06 

0.4 1.14E-06 2.00E-03 2.07E+01 1.61E-05 

0.5 4.91E-07 3.40E-03 2.30E+01 2.08E-05 

0.6 1.28E-06 4.70E-03 2.48E+01 1.22E-05 

0.7 1.88E-06 5.80E-03 2.66E+01 1.74E-05 

0.8 1.16E-06 6.50E-03 2.84E+01 6.46E-05 

0.9 0 9.60E-03 3.06E+01 1.10E-04 

   1       0   0.00E+00     3.33E+01 0.00E+00 
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     (a)         (b) 

 

Table 5.a. A comparison between the average error of CHPM and another method for𝑓2. 

𝑅𝑒 𝑘 𝑝 𝑛 CHPM YTHPM[7] HNNPS[34] HPM[6] VIM[6,3] 

0.1 0.01 0.7 0 5.38E-05 2.20E-03 - - - 

0.5 0.001 1 2 4.83E-06 - - - - 

0.5 0.01 0.5 0 1.27E-06 1.43E-03 - - - 

0.5 0.01 1 0 6.12E-07 6.50E-04 3.01E-03 - 2.05E+01 

1 0.01 0.5 0 1.44E-05 - - 8.10E-02 7.47E-01 

1 0.01 0.5 2 1.32E-05 - - 6.64E-02 8.56E-01 

1 0.02 1 0 4.85E-06 - - - - 

1 0.1 1 2 1.76E-04 - - - - 

 

Table 5.b. A comparison between the average error of CHPM and another method for𝑓2. 

𝑅𝑒 𝑘 𝑝 𝑛 CHPM GM[5] ADM[1] OHAM[3] HAM[37] 

0.1 0.01 0.7 0 5.38E-05 - - - - 

0.5 0.001 1 2 4.83E-06 1.69E-01 - - - 

0.5 0.01 0.5 0 1.27E-06 - - - 7.20E-06 

0.5 0.01 1 0 6.12E-07 - - - 2.31E-05 

1 0.01 0.5 0 1.44E-05 - - - - 

1 0.01 0.5 2 1.32E-05 - - - - 

1 0.02 1 0 4.85E-06 - 8.12E-06 - - 

1 0.1 1 2 1.76E-04 - - 2.66E-03 1.39E-03 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig .3. The impact of the Reynolds number on the 𝑧-direction(a) and 𝑟-direction(b) velocity 

components for 𝑘 = 0.01. 
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Fig .4. The impact of the injection Reynolds number on the 𝑧-direction(a) and 𝑟-direction(b) 

velocity components for 𝑅𝑒 = 1.5.  

 

Fig .5. The impact of the 𝑅𝑒, 𝑛,  𝑝𝑟 and 𝑘 on the temperature distribution components for (a) 

𝑘 = 0.01, 𝑝𝑟 = 0.7 and (b) 𝑅𝑒 = 1, 𝑛 = 3. 

 

6. Convergent analysis of CHPM 

In this section, we will examine the convergent analysis of the approximate solution achieved by 

CHPM. Consider the system of nonlinear equations (29,33) in the following form: 

 

𝑓1 (𝑥)  =  𝐺1(𝑓1(𝑥), 𝑓2(𝑥))

𝑓2 (𝑥)  =  𝐺2(𝑓1(𝑥), 𝑓2(𝑥))
} ,        (45) 

where 𝐺1 and 𝐺2 are non-linear operators. The solution by the present approach is equivalent to 

the following sequence: 

 

𝑆𝑛1 = ∑ 𝑢𝑖
𝑛1
𝑖=0 = ∑ 𝑐𝑖  𝑇𝑖

∗ n1
 𝑖=0

𝐾𝑛2 = ∑ 𝑣𝑖
𝑛2
𝑖=0 = ∑ 𝑑𝑖  𝑇𝑖

∗ n2
 𝑖=0

} ,             (46) 

     (a)         (b) 

     (a)           (b) 
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Table 6. Convergence of analytical approximate solutions for 𝑓1 

𝑅𝑒 𝑘 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 

1 0.01 6.42E-01 8.73E-02 2.08E-02 5.58E-03 5.84E-04 

2 0.01 6.29E-01 8.54E-02 3.95E-02 1.09E-02 4.92E-04 

3 0.01 6.17E-01 8.22E-02 5.54E-02 1.56E-02 2.29E-04 

4 0.01 6.06E-01 7.83E-02 6.85E-02 1.94E-02 1.41E-03 

1.5 0.01 6.35E-01 8.65E-02 3.05E-02 8.32E-03 6.23E-04 

1.5 0.05 6.34E-01 8.83E-02 3.52E-02 1.03E-02 1.37E-03 

1.5 0.1 6.30E-01 9.06E-02 4.38E-02 1.42E-02 2.47E-03 

1.5 0.15 6.22E-01 9.22E-02 5.94E-02 2.21E-02 3.31E-03 

 

 

Table 7. convergence of analytical approximate solutions for 𝑓2 

𝑅𝑒 𝑘 𝑝𝑟 𝑛 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 

0.25 0.01 0.7 0 5.99E-01 1.54E-02 3.20E-03 1.20E-04 1.11E-04 

0.25 0.01 0.7 2 6.11E-01 3.35E-02 1.03E-03 3.97E-04 2.22E-04 

0.25 0.01 0.7 3 6.17E-01 4.23E-02 1.45E-03 1.02E-03 3.89E-04 

2.5 0.01 0.7 0 7.34E-01 1.76E-01 1.19E-02 1.07E-02 3.48E-04 

2.5 0.01 0.7 2 8.00E-01 2.97E-01 3.77E-02 9.86E-03 5.35E-03 

2.5 0.01 0.7 3 8.24E-01 3.45E-01 5.97E-02 7.61E-03 7.51E-03 

1 0 0.5 3 6.74E-01 1.17E-01 7.15E-03 3.96E-03 1.43E-03 

1 0.15 0.5 3 6.76E-01 1.19E-01 7.80E-03 4.38E-03 1.64E-03 

1 0.3 0.5 3 6.83E-01 1.33E-01 1.43E-02 5.12E-03 3.20E-03 

1 0 2.5 3 8.67E-01 4.17E-01 8.30E-02 1.02E-02 8.74E-03 

1 0.15 2.5 3 8.70E-01 4.23E-01 8.55E-02 1.11E-02 9.78E-03 

1 0.3 2.5 3 8.89E-01 4.65E-01 1.11E-01 1.69E-02 8.61E-03 

 

 

Theorem 6.1  (Convergence of the problem of the turbine disc cooling) 

Let 𝐺1  and 𝐺2  are the operators from a Hilbert space ℋ  into ℋ  and 𝑓1 (𝑥) and 𝑓2 (𝑥) are the 

analytical solution of equations (29, 33). The approximate solutions ∑ 𝑢𝑖
𝑛1
𝑖=0 = ∑ 𝑐𝑖 𝑇𝑖

∗ 𝑛1
 𝑖=0  and 

∑ 𝑣𝑖
𝑛2
𝑖=0 = ∑ 𝑑𝑖  𝑇𝑖

∗ 𝑛2
 𝑖=0  are convergent to analytical solutions 𝑓1 (𝑥), 𝑓2 (𝑥) respectively when ∃ 0 ≤

𝛼 < 1, ‖𝑢𝑖+1‖ ≤  𝛼 ‖𝑢𝑖‖ ∀ 𝑖 ∈ ℕ ∪ {0} and ∃ 0 ≤ 𝛾 < 1, ‖𝑣𝑖+1‖ ≤  𝛾‖𝑣𝑖‖ , ∀ 𝑖 ∈ ℕ ∪ {0}. 
 

Proof:  Firstly, we will prove that for 𝑓1 (𝑥), 
we want to show that {𝑆𝑛1}𝑛1=0

∞  is a Cauchy sequence, 

‖𝑆𝑛1+1 − 𝑆𝑛1‖ = ‖𝑢𝑛1+1‖ ≤ 𝛼‖𝑢𝑛1‖ ≤ 𝛼
2‖𝑢𝑛1−1‖ ≤ ⋯ ≤ 𝛼𝑛1‖𝑢1‖ ≤ 𝛼

𝑛1+1‖𝑢0‖. (47) 

 

Now for 𝑛1,𝑚1 ∈ ℕ , 𝑛1 ≥ 𝑚1 
‖𝑆𝑛1 − 𝑆𝑚1‖ = ‖(𝑆𝑛1 − 𝑆𝑛1−1) + (𝑆𝑛1−1 − 𝑆𝑛1−2) +⋯+ (𝑆𝑚1+1 − 𝑆𝑚1)‖  

                      ≤ ‖𝑆𝑛1 − 𝑆𝑛1−1‖ + ‖𝑆𝑛1−1 − 𝑆𝑛1−2‖ +⋯+ ‖𝑆𝑚1+1 − 𝑆𝑚1‖  

                      ≤ 𝛼𝑛1‖𝑢0‖ + 𝛼
𝑛1−1‖𝑢0‖ +⋯+ 𝛼

𝑚+1‖𝑢0‖  

                      ≤ (𝛼𝑚1+1 + 𝛼𝑚1+2 +⋯+ 𝛼𝑛1)‖𝑢0‖ = 𝛼
𝑚1+1 1−𝛼

𝑛1−𝑚1

1−𝛼
‖𝑢0‖ (48) 

Hence, lim
𝑛1,𝑚1→∞

‖𝑆𝑛1 − 𝑆𝑚1‖ = 0, it means that {𝑆𝑛1}𝑛1=0
∞  is a Cauchy sequence in the Hilbert 

space ℋ, therefore there exists 𝑆 ∈ ℋ such that lim
𝑛1→∞

𝑆𝑛1 = 𝑆, where 𝑆 = 𝑓1 (𝑥). 

The proof of 𝑓2 is done in the same way.           ∎       
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Established on theorem 6.1, the parameter values 𝛼𝑛1 must be calculated to achieve convergence 

using the following relationship: 

𝛼𝑛1 ≥ {

‖𝑢𝑛1‖

‖𝑢0‖
 , ‖𝑢0‖ ≠ 0,    𝑛1 = 2,3,4,…

0         ,                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          

 

where 𝛼 =
‖𝑢1‖

‖𝑢0‖
< 1 . 

 

 

We can now determine the convergence of the analytical approximate solutions using this 

relationship, as Tables 6 and 7 show. 

 

 

7. Conclusions 
In this paper, a novel approach (CHPM) is successfully applied to provide an approximate 

analytical solution for the turbine disc cooling problem. The effects of several parameters, including 

the injection Reynolds number (𝑅𝑒), the cross viscosity parameter (𝑘), the Prandtl number (𝑃𝑟), and 

the power law index (𝑛), on velocity and temperature distribution are investigated. From the obtained 

results, the following conclusions are drawn: 

• Increasing the Reynolds number leads to an increase in the velocity value with an increase in the 

curvature of the temperature distribution and a decrease in its value. 

• The velocity reaches its highest value in the channel's centre with low Reynolds numbers. 

• Increasing the cross viscosity leads to an increase in the velocity value, but a decrease in the 

temperature distribution. 

• Increasing the Prandtl number and the power law index leads to a decrease in the temperature 

distribution. 

• CHPM has a good convergence as shown in Tables(6,7) and a high accuracy compared to other 

methods as clear in Tables(2-5). 

The results obtained affirm the validity of the new method, which is characterized by reduced 

iteration, agreement with previous studies, minimal errors, and excellent convergence. As a result, it 

can be effectively utilized to investigate more complex fluid flow problems and other application 

model problems that hold significant real-world relevance. 
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لدراسة التدفق وانتقال الحرارة   الاضطراب المتماثل -طريقة تشيبيشيف
 لتدفق السوائل غير النيوتونية على قرص توربيني 

 الستار جابر علي السيفعبد  ،*صباح عبد الوهابمحمد  

     .قسم الرياضيات، كلية التربية للعلوم الصرفة، جامعة البصرة، البصرة، العراق  

 معلومات البحث الملخص 

تم في هذا البحث تقديم طريقة جديدة لدراسة تأثير المائع غير النيوتوني  

تبريد قرص التوربين. تعتمد على الجريان وتوزيع درجة الحرارة عند  

تطويرها  تم  التي  المثلي  الاضطراب  طريقة  على  الجديدة  الطريقة 

المقترحة مع  الطريقة  باستخدام سلسلة تشيبيشيف. وتمت مقارنة نتائج 

الأدبيات   في  العددية  الطرق  باستخدام  عليها  الحصول  تم  التي  النتائج 

قا جيدا. تم استكشاف السابقة للتأكد من صدق الطريقة، حيث أظهرت تواف

درجة   وانتشار  التدفق  على سرعة  الفيزيائية  العوامل  من  العديد  تأثير 

الحرارة، مثل رقم رينولدز، ومعلمة اللزوجة المتقاطعة، ورقم براندتل، 

وقانون الطاقة. وكانت النتائج التي تم الحصول عليها باستخدام الطريقة 

خدمة لحل المشكلة الحالية.  المقترحة أكثر دقة من الطرق الأخرى المست

الطريقة  فعالية  الأخطاء  وجداول  الأشكال  توضح  ذلك،  على  علاوة 

 الجديدة وكفاءتها. 

 2024نيسان  07 الاستلام              

 2024ايار  3القبول                

 2024حزيران  30النشر                 

 المفتاحية الكلمات 

الهوموتوبي، تمدد تشيبيشيف ، طريقة 

تبريد قرص التوربين، الموائع غير 

 النيوتونية، دراسة التقارب.
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