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1. Introduction

Integro-differential equations (IDEs) are important in describing physical, natural, and
biological phenomena, as well as in engineering and biological technologies, in recent years, they
have received increasing attention in many different disciplines. Such as elasticity theory,
biomechanics, electromagnetism, industry and scientific applications, and others [1, 2, 3].

RKHSM considered one of the effective methods to solve many papers, including differential and
integral equations which have widely used in statistics and probability.

The following formula of NIDEs is given by [4]:
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1 b g ®@®) =w(®) + o [ Tt 2F(g(D)dz, (1)

the initial condition g®)=r k=1,..,q,

where by (t), w(t) and T(t,z) are known functions so that t€ [t, t;], to, t1, 0,7, q € R ,F(g(t))
is a nonlinear operator and g(t) is an unknown function in W[ to, t;],i = 1,2, ....

IDEs have wide applications in various fields, during the last decades, many numerical methods have
been developed to solve these equations, whether linear or nonlinear. These methods include
Adomian decomposition method by [5] collection method [6, 7, 8, 9], Taylor polynomial [10], cubic
B-spline least-square method combine with a quadratic weight function [11], cubic B-spline Galerkin
method combine with a quadratic weight function[12], least-squares method [13, 14], homotopy
perturbation method [15], the simplified reproducing kernel method and the homotopy perturbation
method [16], Laplace discrete Adomian decomposition method [17] , other numerical methods are
used to solve IDEs, since these equations are difficult to solve using analytical methods.

The RKHSM has been used to solving many problems, such as singular 1Es [18, 19, 20, 21], linear
IEs [22, 23, 24], nonlinear IEs [25, 26, 27] and all equations were solved using the Gram-Schmidt
algorithm. However, the researchers below worked on a new approach, where they solved a nonlinear
IEs [28], solved a class of functional IEs [29] and solved third-order differential equations [30].

The main purpose of this paper is to apply RKHSM for solving NIDEs. The convergence and error
analysis will be discussed.

It is organized into five parts, including the introduction. The second part gives the basic definitions
of the reproducing kernel, inner product, norm, function space, and the form of the reproducing kernel.
The third part explains how to apply the method to NIDEs, and also discusses the convergence theory.
The fourth part gives the numerical results and explains the error magnitude, and the fifth part
contains the conclusion.

2. Reproducing Kernel Hilbert Space
In this part, It has been defined the function space W [t,,t;] where i = 1,2, ... and define the
kernel G4 (t) in any space in the research that relies on W [t,, t;], [31]:

Definition 2.1. Let it be S are abstract set so that S # ¢, a function G: S x S — C, where C be the set
of complex numbers G is a reproducing kernel of H if satisfied

e Vs€eS,G(t) EH,

e Vs€eS,VgeHg(s)=<G(t),g(t) > (2
Definition 2.2. The definition of function space Wzi [to, t1], i = 1,2, ... is as follows:

Wito, t:1] = {g(®©): g: [to, t1] = R, g Vcontinuous function, g® € I?[t,, ]},

The inner product and the norm in W;[t,, t,] are defined as follows.

<G f >wiieg = Zheo 9% )P () + [ gD OF P @, (3)

gl wigeo e = \/ <99 Zwiltets] “)

Remark 2.1. [25] If V t € [to, t1] and Vg(t) € W;[to, t1] 3 Gy(t) € W;[to, t,] such that
< Gg(t), g(s) > Wit = g(t), where s € [ty, t;] then the Hilbert space W [t,, t;] is a reproducing

kernel space.

Define the reproducing kernel of W [t,, t;] is
184
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Gls(t) = lecl:1 ak(S)tk_l, t<s
st(t) = lecl:1 vk(S')tk_l ,t>s

Gs(t) = { ©)

the coefficients a, (s), v, (s), {k = 1,2, ...,2i}, can be obtained by.
akG14,(s)  dkG24(s) .
at; = at; ,k=0,1,..,2{ — 2, (6)

. 62i_161 (S+) azi—le (s7)
and (_1)1( atzi—s1 - atzi—s1 ) =1 (7)

Remark 2.2. By using (6) and (7), we will calculate G4 (t) in W[0,1] when i = 1,2,3,4
i=4,

-7 n (t0s)  (t%s%) n (t*s®) n (t3s3) n (t2s?)

+ ts + 1, t<s
GA(t) = 5040 720 240 144 36 4
s 7 4 (st) 3 (s5t2) + (s*t3) 4 (s3t3) 4 (s2¢2) bts 4+ 1 .
5040 720 240 144 36 4 § ! $
i =3,

t5 (t*s) N (t3s?) N (t%s?)
G =4 120 24 12 4
s s® (s*t)  (s3t?)  (s%t?)
—~ + +

+st + 1, t<s

+ st + 1, t>s

120 24 12
i=2 )
t3  (t2%s)
- + st + 1, t<s
Gw=4 % 2
s QZU—F t+1 t>
6 2 ° ’ S
i=1,

170y _ (t+1, t<s
GS(t)_{S+1, t>s

3. The Implementation of Method

In this part, it is mentioned how RKHSM is applied to solve NIDEs and related theories are
mentioned. In many previous studies, researchers used the Gram-Schmidt algorithm to obtain an
orthogonal system. However, there are some problems associated with using this algorithm, namely
numerical instability due to the large number of computational steps required to implement it.
Therefore, in this study, an alternative algorithm that is numerically stable and less computationally
complicated will be used.

The equation (1) can be expressed in the following form:

t t
Lg(t) = XI_ b ()g® () — o ftol‘” T(t,2)F(g(2))dz (8)
Lg(t) = w(t),
where L: W} [to, t;] = Wi[te, t;] is an invertible bounded linear operator.
Was chosen a countable set of points {t, }z,in the interval [¢,, t;] define

8e(t) = G (1), we(t) = L6, (t),
where L*is the adjoint operator of L.

Theorem 3.1. [31] Let {t,}z=,is dense on [ty, t;] then {u; (t)}z=,is a complete function system of
Wi (to, t1] and pi (t) = LSG;'k(t), where the operator L¢ applies to function of s
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Theorem 3.2. [28, 29, 30] Let {x ()} be a linear independent set in W[t,,t;], and {fi, (t)}5,be
an orthogonal system in W; [to, t;], 50 that i, (¢) = X5_; Bieju; (), if

90 = ) Ay (©) )
k=1
and the approximate solution
M M
()= ) At ® = ) Aefte(0) (10)
k=1 k=1
thenTA = w,
where,
< Ly, 4y >W2i[t0,t1] Ly, py > Wito,t4] Aq Al
= : : A= VA= ¢ |
< Lyuy, us >W2i[t0,t1] o < Lpy, tm >W2i[t0,t1] Ay Ay
< W,y >W Htot1] P11 0
w = , B= ( : : > and B; are orthogonal coefficients, (B, >
<w, Um >W2i[t0,t1] ﬁlM ﬁMM

0,kh=12,.. M.

Proof. Let g(t) € Wi [to, t1] then g(t) = Yoy Appn(t) = X501 A il (£)
To get an approximate solution, was cut the series at M.

gm(t) Y1 A (t) = Zk 1Akﬂk(t)
{1 (t)}57=, be a linear independence, the 4; = X3 ; AxByj, k = 1,..., M then

A= T4, 11)
using (8) leads to Lgy, (t) = w(t),fork =1,..,M ,
M

- z An < Lfn, fe Zyire, e =< W Bk Zyiieo 0]
h=1

M K h k

- z Ap z Zﬁhz < Ly, uj > Wiltoty] = ZBM < WLl >yt e
R

- Z Ahz Z Brj < Luy, u;j > Wiltots] Bl = Zﬁkj < Wl >y ]
h=1 j=1 1=1 =

[\gz

w(BTA e = Zﬁk, < Wby >0 eq BTEA = B,

from (11) thenTA = w. [

=
1l
[

Theorem 3.3. [25, 28] If g(t) € W{[t,, t;], then g(t) is bounded.

Theorem 3.4. [25, 26, 28, 31] Let IIgM(t)IIWZi[tOItl], is bounded, and Eqg. (1) has a unique solution. If

the dense sequence {t }r=1,0N [to, t1], then M-term approximate solution g,,(t) converges to g(t) of
(1) and the exact solution is expressed g(t) = Xg=; At (t),where A; = Z}‘zl F,;jle.

186



W. K. Al-Zuhairi, H. O. Al-Humedi.

Proof.
i. To prove that g,, (t) convergent to g(t), we conclude that:

Iu+1@®) = gy O+ Ap1 iy +1@) =gy (O+Ap 41841 (0,
{il, ()}, is orthogonal, and leads to ”gM+1”W2i[to,t1] = ”9M”W2i[t0,t1]+‘42 =y, Az,

from the boundedness of llgu Il i, 1 k=1 4% < o .ie. {AR},_, €%, where
J? = {Au i, A < oo}, (k =12,..)if N > M then
2
||gN - gM”WZi[tO'tl]
=llgn — gn-1+ gn-1 =+ Gu+1 — gM”‘Z,VZi[tO'tl]
2 2
<llgy — gN—1||W2i[tO’t1] +ot llgmsen — gM”WZi[tO'tl]
= kM=+1\} ”gk _gk_llla/zi[to,tl]
2 _ 2 _ 2 _yvM ;2
S0 llgic = ge—1llyipz, rg = Ak > consequently llgy — gl o ) = Zi=14 — 0as
M — oo . Considering the completeness of Wy [t,, t;1],
gu@) » g(t),as M > o
where g(t) € W[ty t,].
ii.  Can prove that g(t) is a solution of (8). By (9)
g(t) = X1 A () = Xy Afie (),
Since Lg(t]) = Z}c;o=1 A~k < Lﬁk,6] >W21[t0,t1]

= z A <l L6 >ypire 1= z A <ol > wilege,)
k=1 k=1

> X581 Buj * (Lg(4) = Biea A < ool >ypie )

- 29'4:1 .BMng(tj) = Y1 Ak < ﬁk,Zﬁ‘il Buj B ZWiltots]

= Yoy A < fig, fim ZWiltots] Ay = Z_I]\'/I=1 BMjW(tj)-

if M =1 then ;L g(t;)=p11w(to) = Lg(ty) =w(ty),

if M = 2 then 1L g(t)+ B2zl g(t2)= Boaw(to) + oz w(tz) — Lg(tz) =w(tz),
moreover, it is clear Lg(t;) =w(t;),

Since {ti}r=1,is dense on [ty, t1], Vt € [to, t1], I {tnx}r=qSuch thatt,, — t,as k — co.

Hence, when k — oo, by Lg(t) =w(t,), Obtained g(t) is the solution of (8). [ |
Theorem 3.5. [25, 26] If g(t) € Wi [to, t;] theneZ = |lgy (t) — 9(t)”2wzi[t0 ;) convergentto o, and
the sequence {e,} is monotonically decreasing .
Proof. From gy, (t), g(t) in (9), (10) then
2 _ 2 _ o 2
ey = ”gM - g” Wzi[a,b] - ”Zk:M+1Ali'k(t) ” Wzi[to,tﬂ

= | ZRoma Areitac (8 ||2M/2i[to,t1] = Z,;”:MHAJZ.,

~2 . .
andef_; =Xy A «» Clearly, ey < ef_4, ,and consequently {e,,}, is monotonically
decreasing. [ |
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Algorithm

. t G [tOy tl]
) _ (k-1)

-’

3. w(t) = LSGék(t)-

4 ij =< L,Uj(t); Hk(t) >W2i[to't1]'

5. N=1.

6. go(ty) = g(ty).

7.

8

9

1

ty k=12, .., M.

Ay = Z?’=1 F]Gj w;.
In () = XRoq At ().
. If N = M stop.
0. ElseN=N+1goto(7).
Numerical experiment

In this study, three examples of NIDEs have been solved to demonstrate the effectiveness of the
RKHSM and its ability to converge toward the exact solution after a few number of iterations. Our
error rate was also compared with other methods using absolute error as a measure.

The absolute error:

er = lg(te) — gul,  k=12,.. M.

Example 1: Consider the Volterra NIDE [32]:
g'(® +g©) =w(®) +2 [, sin(t) g*(2)dz, tefo1]  (12)

where w(t) = cos(t)(1 + sin?(t)) + (1 — t)sin(t), subject to initial condition g(0) = 0 and the
exact solution is g(t) = sin(t).

Table 1. Comparing the numerical results of our method with [32]

t g gu(®) inw3 ex e, in[32]
2.0000E — 01 1.9866F — 01 1.9866E — 01 0 6.6518F — 06
4.0000F — 01 3.8941F — 01 0.3894E — 01 5.5622E — 14 2.2069E — 05
6.0000F — 01 5.6464E — 01 5.6464E — 01 0 4.0620F — 05
8.0000F — 01 7.1735E — 01 7.1735E — 01 0 2.5674E — 05
1.0000E — 00 8.4147E — 01 8.4147E — 01 0 9.6104E — 05
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£ Exact Sol.
Numerical Sol.

RKHSM Solutions

Fig. 1 The comparisons between approximate and exact solutions for Example 1. at M=6.

Example 2: Consider the Fredholm NIDE [9]:

g'®) +g©® =w® - [, g*(@dz, t € [0,1] (13)

where w(t) = %(e‘2 — 1), subject to initial condition g(0) = 1, and the exact solution is g(t) = e~*.

Table 2. Comparing the numerical results of our method with [9]

t g(t) gu(t) inW; ex e in[9]
1.2500E — 01 8.8249E — 01 8.8249E — 01 0 6.2983E — 13
2.5000E — 01 7.7880E — 01 7.7880E — 01 1.1657E — 14 6.4948E — 13
3.7500E — 01 6.8728E — 01 6.8728E — 01 0 6.7090E — 13
5.0000E — 01 6.0653E — 01 6.0653E — 01 0 6.9033E — 13
6.2500F — 01 5.3526E — 01 5.3526E — 01 0 7.0754E — 13
7.5000E — 01 4.7236E — 01 4.7236E — 01 5.8287E — 15 7.2214E — 13
8.7500F — 01 4.1686F — 01 4.1686E — 01 0 7.3024E — 13
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0.5 -

J. Basrah Res. (Sci.) 50(2), 182 (2024).

0.3
(0]

0.1 0.2 0.3

0.4 0.5
t

0.6 0.7 0.8 0.9 1

Fig. 2 The comparisons between approximate and exact solution at M=10.

9'®©) =w(®) - [[(9°@) — 2)dz

Example 3: Consider the Volterra NIDE [33]:

t €[0,1] (14)

where w(t) = §t5, the initial condition g(0) = 0, the exact solution is g(t) = t2

Table 3. Comparing the numerical results of our method with [21]

t g gu(®) inw$ ex e, in[21]

0 0 0 0 0
2.0000F — 01 0.4000F — 01 0.4000F — 01 0 4.6837E — 17
4.0000E — 01 1.6000F — 01 1.6000E — 01 0 2.7755E — 17
6.0000F — 01 3.6000F — 01 3.6000F — 01 1.1657e¢ — 14 1.11022F — 16
8.0000F — 01 6.4000F — 01 6.4000F — 01 0 2.2204F — 16
1.0000E — 00 1.000E — 00 1.000E — 00 0 1.1102E — 15
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¢ Exact Sol.
0.9 Numerical Sol.

RKHSM Solutions

Fig. 3 The comparisons between approximate and exact solutions at M=4.
5. Conclusion

In this study, the reproducing kernel Hilbert space method was applied on three examples
of nonlinear integro- differential equations that have analytical solutions for the purpose
of knowing the accuracy and effectiveness of proposed method, using MATLAB R2023a
to obtain a numerical result. Anew algorithm was used instead of the Gram-Schmidt
algorithm, which was It is numerically unstable and contains many complicated
mathematical operations. A comparison was also made between the resulting approximate
solutions and the approximate solutions of other methods. The results showed that the
absolute error in the solutions is equal to zero or converges to zero, which means that it is
better than the results of [32], [9] and |33] at an equal number of iterations. The algorithm
is simpler, more efficient and contains fewer mathematical steps, leading to more accurate
approximate solutions compared to other methods.
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