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1. Introduction

One of leading causes of cancer are Lung and colon cancer worldwide [1]. In the meantime, one
of the primary strategies to avoid deaths of lung and colon cancer is early detection. [2]. Recently,
machine learning techniques, specifically deep learning, have shown huge potential in accurately
detecting these cancers by analyzing medical images efficiently. Hence, they can offer an automatic
detection and classification of various diseases [3,4].

The vast revolution of Convolutional Neural Networks (CNNSs) especially deep learning, allowed for
efficient detection and classification of cancer diseases using CT scans or X-ray images. Models and
architectures developed for this purpose usually require large amounts of images to allow them to be
trained efficiently to produce superb classification accuracy [5]. For research purposes, in 2019, a
large dataset of lung and colon images with 25000 images was introduced. This dataset is divided
into five classes with 5000 samples per class. The challenge hence lies in the ability to handle such
amounts of data during the training stage of a deep learning model since the resources required
impose the use of supercomputers to perform this task [6]. In several field including bioinformatics
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field, ensemble methods are increasingly often used to perform prediction tasks such as regression
and classification [7]. One of the ensemble learning techniques is Vote-based learning, where each
classifier is situated on a variety of weighted training dataset categories [8]. Voting can be used to
increase the performance of the model. It is combined the predictions from various models. Also,
voting may be utilized for data prediction or classification [9].

In this paper, a framework that is based on stacked ensemble learning of multiple CNN
architectures is introduced. These models are: Xception, Inception, and MobileNet. A meta-model
is produced using the assembly of these models and voting is applied to pick the best outcome. Hence,
the ensemble model with voting was found to produce better classification results that the standalone
models. Experiments were carried out on a challenging dataset of 25000 images with four-fold cross
validation. In addition, our results were compared with state-of-the-art results applied to the same
dataset.

The rest of this paper is organized as follows: Section Il presents related work that were applied
on the LC25000 datase. Section I11 describes in details the methodology of the proposed ensemble
model. Section TV presents the results of the proposed approach with a comparison with state-of-
the-art methods. Finally, we present conclusions and future work in Section V.

2. Literature review

In literature, many techniques were proposed for classification images of LC25000 dataset using
deep learning. Some of these methods were applied on the full LC25000 datasets others were applied
on a subset of the dataset. Authors in [10] used the BICLCD-TSADL technique. This technique
contained many approaches of preprocessing, feature extraction and classification such as GhostNet
method for feature extraction, the echo state network (ESN) and Tuna Swarm Algorithm classifiers
were utilized for lung and colon cancer images detecting. They applied these models on five class
of LC25000 dataset and achieved 99.33% accuracy. The work proposed in [11] employed a
prediction framework based on InceptionV3, Daisy features, and Histogram of Gradients (HoG) to
classify lung tissues into two classes: benign and malignant using 15000 images of LC25000 and
scoring a high accuracy of 99.6%. On the other hand, a hybrid CNN method of VGG-16 architecture
CLAHE technique were proposed in [12] achieved an accuracy of 98.96. Multiple deep learning
architectures were employed in [13] and achieved an accuracy of 99.30% in classifying LC25000
dataset samples. However, they reported results on two classes which means they applied their
framework on 10000 samples only. In [14] a CNN created in this work by using a liner stack of
layers. Three hidden layers, one input layer, and one fully connected layer were utilized. This model
applied on 15000 lung cancer images and achieved 97.20 accuracy.

Table 1. Summary of literature review

No.

References Methodology Database Accuracy

1 Obayyaetal [10] BICLCD-TSADL LC25000 99.33
(2023)

2 Chenetal. [11] Inception V3, HOG and 15000 lung cancer 99.60
(2021) daisy feature extractions images '

3 Hadiyoso et al. (2023) CNN-CLAHE-VGG16 LC-25000 98.96

[12]

4 Talukder et al. [13] Hybrid Model 10000 images of 99.30
(2022) colon cancer

5 Hatuwal et al. [14] CNN 15000 lung cancer 97.20

images
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3. Methodology

The proposed methodology relies on three powerful CNN models and the ability to combine them
using stacked ensemble learning with voting. In this section, details of the methodology will be
presented thoroughly.

N

Fig. 1. The proposed model.
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Fig. 2. Sample images from the Lung and Colon (LC25000) dataset.



A. O. Hasan, Z. A. Oraibi.

3.1. Inception Architecture

This model employs a factorization process that separates convolutions into distinct branches to
operate on space and channels in succession [15]. A wide range of strategies are utilized for network
optimization. In order for Inception to learn multi-scale representations of the input images, tiny
kernels are swapped for bigger ones. In this case, the amount of restrictions and complexities are
also downsized with a resolution of 768 x 768. The unique criteria of this dataset is its diversity and
volume which make it suitable for research purposes.

3.2. Xception Architecture

It is considered a development of Inception architecture. According to [16], Xception is a
linear stack of separable convolutional layers with connections. The purpose of these layers is to
reduce the need for memory and the expense of computing. The number of these layers is 36 divided
into 14 modules. Space-wise along with channel-wise features are learned when the separable
convolutions are divided in the Xception model.

3.3.MobileNet Architecture

This architecture is based on depthwise separable convolutions, this convolutions factorize a
conventional convolution into a pointwise convolution, which is a 1x1 convolution and a depthwise
convolution. A single filter applies to each input channel by using the depthwise convolution. Then,
to combine the outputs of the depthwise convolution, a 1x1 convolution then applied by the
pointwise convolution [17].

3.4.Stacked Ensemble Model

The proposed methodology depends on the ability to extract the best predictions from the
multiple architectures applied on the dataset. Hence, an ensemble strategy is applied to find the best
prediction based on hard voting. This ensemble technique ensures less overfitting with high
classification performance to create the meta-classifier, Inception, Xception, and MobileNet models
are utilized. In the experiments, we demonstrate the reasons to choose this ensemble strategy by
showing the amount of accuracy improvement resulting from this combination in comparison with
the accuracy resulting from each standalone model.

In order to create the stacked ensemble model. A set of individual models are trained which
have been previously described. These individual models (Inception, Xception, and MobileNet) are

trained on the LC25000 dataset. After that, the predictions from each model are stored. The meta-
learner uses the predictions from the individual models as features. Finally, the meta-learner uses
voting to choose the label that has the best probability among the three produced probabilities. Figure
(1) shows the proposed model.

3.5. Dataset

The LC25000 dataset utilized in this paper can be considered as a comprehensive set of Lung
and Colon cancer images [18]. This dataset consists of five classes, with 5000 images per class. In
total, we are provided with 5000 images which makes the dataset a challenging one. Image samples
of these classes are shown in Figure (2). The original dataset is divided into two folders, the first one
is the lung folder. The lung folder has three classes: Lung Adenocarcinoma (Lung aca), Lung Benign
(Lung n), and Lung squamous cell carcinoma (Lung scc). The second folder is colon folder which
has two classes, Colon Adenocarcinoma (Colon aca) and Colon Benign (Colon n).

In the experiments, 75% of images from each class were used during the training stage and the
remaining 25% images were used for the testing stage. Although some papers in the literature
reported the accuracy of using only a subset sample of images from the original dataset, in our paper,
we used all images from the five classes during training and testing and reported accuracy using four-
fold cross-validation. LC25000 dataset is available to the public and can be used for research purposes.
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Table 2. Hyperparameters were used in the experiments

Hyperparameter Value

Epochs 15

Optimizer Adam

Loss Function Categorical Crossentropy
Learning Rate 0.001

Batch-Size 32

4. EXPERIMENTAL RESULTS

4.1 Results of Classification

The results of experiments conducted on the LC25000 are elaborated in this section. First, we
introduce the list of hyperparameters used during training. After that, we demonstrate the
classification results based on the four metrics: accuracy, precision, recall, and F1-score. Finally, a
comparison between our proposed approach with state-of-the-art results is given to show the
robustness of our methodology. Table (1) lists the hyperparameters used during the training stage. As
we can see, we used 15 epochs along with a learning rate of 0.001 since the majority of classification
tasks proved to work well using this setting. A batch size of 32 with Adam optimizer has also been
utilized.

In the experiments, four-fold cross-validation was used and the accuracy was reported based on
the average of four resultant accuracies. All models were trained on 18750 images while testing was

performed on 6250 images. The performance metrics used in the paper are as shown in equations
1,2,3, and 4.
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Fig. 3. Confusion Matrix for Xception model in four folders.
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Figures (3, 4, 5, 6) show the confusion matrices of the four-fold cross-validation of the proposed
ensemble methodology and the three deep learning architectures.

Table (2) introduces the results of applying our stacked ensemble approach to the LC25000 images.
The results of each standalone model were improved when the ensemble learning approach was
applied.

Table 3. The Results of Our Models

Method precision Recall F1-Score Accuracy
Xception 96.60 96.50 96.50 96.53
Inception 95.95 95.70 95.75 95.79
MobileNet 96.15 95.95 95.80 95.93
Ensemble

Method 98.60 98.55 98.65 98.47
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4.2. Comparison with State-of-the-Art Classification Techniques

In this section, we compare the performance of the proposed stacked ensemble model of
multiple deep learning architectures with the results of other techniques applied on the same
LC25000 dataset to show the robustness and efficiency of our model. In Table (3), we elaborate on
the results of recent methodologies. Authors in [19] proposed utilizing a multiresolution EfficientNet
architecture achieving a high prediction accuracy of 97.24% on the five classes LC25000 database
using the EffcientNet-B0O model. In [20] authors, Masud et al. proposed to use a CNN architecture
to classify five classes of lung and colon dataset. The accuracy score was just 96.33%. ljaz et al. [21]
proposed a fusion mechanism of both deep learning and Gray Wolf optimization algorithms. The
accuracy achieved was 87%. In [22], authors introduced a deep learning framework and applied it
on a subset of LC25000 images and achieved a classification score of 97.73%. Wadekar et al. [23]
proposed to use a modified version of the VGG-19 model to predict only three classes of Lung cancer
images. The accuracy scored using their method was 97.73%. The accuracy achieved by our
proposed methodology surpasses the proposed techniques in the literature. Moreover, the framework
can be enhanced by using alternative powerful CNN models.

Table 4. Comparison between our approach and state-of-the-art methods

References Methodology Dataset Year Accuracy
Anjum et al. [19] EfficientNet-B2 LC-25000 2023 97.24
Masud et al. [20] CNN LC-25000 2021 96.33
ljaz et al. [21] ResNet50,EfficientNetB0O,KNN  LC25000 2022 98.37
Provath et al. [22] CNN LC25000 2023 97
Wadekar et al. [23] Modified VGG-19 1&?r?g? 2023 97.73
Our work Stacked Ensemble Model LC25000 2024 98.47

5. Conclusion

In this paper, an ensemble deep learning method was applied to classify lung and colon
cancer diseases. Three state-of-the-art architectures named: Inception, Xception, and
MobileNet were combined using a hard voting strategy to produce the best prediction
accuracy. In the experiment, we applied the proposed method on a challenging dataset of
25000 images with five classes. Each class has 5000 images and 75% samples of the original
data were used for training and the remaining samples were used for testing. A high
classification accuracy of 98.3% was achieved which outperforms the results of each model.
This approach has the potential for further enhancement to improve the classification
accuracy.

In the future, another ensemble approach will be tested on different deep learning
architectures. The purpose is to reach to an optimal accuracy to make the prediction results
from the machine as accurate as the human. Moreover, testing on many classes of lung and
colon cancer will be carried out to determine how sensitive the model will be in handling
such diversity.
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