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Both individuals and organizations prioritize data 

security and privacy, leading to an increasing focus on 

technological solutions that emphasize these aspects. 

Searchable symmetric encryption stands out as a 

prominent choice for secure storage and search of 

encrypted data on cloud servers, contributing to this 

objective. While searchable symmetric encryption 

offers numerous benefits, it also faces certain 

challenges, particularly when dealing with large 

databases. One significant challenge is poor 

performance, often attributed to poor locality. Visiting 

multiple locations can significantly increase the time 

required for data retrieval. Additionally, optimization 

methods aimed at improving locality can sometimes 

impact read efficiency or result in excessive storage of 

the encrypted index on the cloud server. In this paper, 

we present a scheme that effectively addresses these 

issues. We have enhanced the encrypted inverted index 

storage mechanism to improve information retrieval 

performance. Our scheme achieves optimal locality 

O(1) and optimal read efficiency in O(1), resulting in 

a significant increase in retrieval speed. Through 

experimentation with real-world data, we have 

demonstrated the practicality, accuracy, and security of 

our scheme. 

 

 

 

 

1. Introduction 

In the era of information technology and Internet, we are generating more data than ever before, 

and this trend is only set to continue. For businesses, individuals, and organizations, the ability to 

store, access, and manage this data efficiently is essential. In response, cloud storage has become a 

popular solution due to its many advantages over traditional forms of data storage [1][2]. It is a 

method of storing data on remote servers that can be accessed from any internet-connected device 

anywhere in the world. This results in data being stored in a centralized location that is easily 
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accessible. The greatest benefit of cloud storage is its flexibility of storage. Unlike traditional storage 

methods, it is not restricted by physical storage devices and offers virtually limitless storage capacity. 

This makes it an excellent choice for all parties involved in the storage process, from businesses to 

individuals.  

Cloud storage offers not just superior storage capabilities, but also exceptional reliability. Cloud 

storage providers utilize redundant storage systems and multiple data centers located in different 

geographic locations, guaranteeing data accessibility even in the face of natural disasters or hardware 

failures. With cloud storage, companies can rest assured that their data is secure and accessible at all 

times, precisely when they need it.  

To guarantee the security of data kept on cloud servers, a variety of techniques must be utilized, 

such as access management, network protection, and encryption [3]. Access management is a system 

that restricts data access based on user identity, position, or authorization. Network security includes 

safeguarding the network infrastructure used for data transfer. Encryption, conversely, is the 

procedure of converting data into a code to avoid unauthorized access. Encryption can be 

implemented both while in transit and at rest, ensuring that data remains safe throughout transmission 

and storage.  

Several encryption techniques are available to secure data stored in the cloud server, including 

symmetric encryption, hashing, and searchable symmetric encryption (SSE) [4]. SSE is an encryption 

technique that enables authorized users to search for specific information in an encrypted database 

without compromising the confidentiality of the data to unauthorized individuals. However, SSE 

encounters various obstacles. It is a comparatively intricate procedure that entails searching within 

encrypted data and requires constructing and maintaining an index structure. This can consume 

significant time and resources. Moreover, there are security concerns related to the possibility of 

exposing confidential information [5].  

SSE has recently been found to suffer from performance degradation and weakness in the 

retrieval process when handling huge databases. Further research has revealed that the cause of this 

issue is not related to the encryption process, but rather to the method used to store the index in 

memory. Storing the index structure in memory forces the cloud server to perform a series of memory 

transitions, commonly referred to as "poor locality" [4][6][7][8][9], during the search process for a 

user's query. These transitions can significantly slow down the retrieval of encrypted data and 

adversely affect the performance of SSE. Numerous researchers have shown interest in enhancing 

the performance in huge databases through locality optimization. However, this optimization process 

has been observed to potentially have negative impacts on both the storage space of data and the read 

efficiency of data. We can summarize our contributions as follows : 

• Our scheme enhances information retrieval performance for all databases, regardless of their 

scale, by improving locality.  

• Our scheme achieves optimal locality of 𝑂(1), which implies that during each search operation, 

the cloud server only needs to access a single memory location, as opposed to multiple locations.  

• Our suggested scheme is exceptionally secure as the server looks for the required data and 

delivers it to the user without decrypting it.  

• Our scheme does not greatly increase the size of the encrypted index stored in the cloud server.  

• Lastly, our scheme is highly read efficiency   𝑂(1) , where the cloud server only responds with 

the requested data when the user queries it. 
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Character Description 

𝑤 Word 

𝑛 Number of words 

𝑊𝑑𝑏 Words in 𝐷𝐵, 𝑊𝑑𝑏 = {𝑤1, . . . , 𝑤𝑛} 

𝑖𝑑 Identifier 

𝐼𝐷𝑠 Identifiers 

𝑛𝑑𝑏 Total 𝐼𝐷𝑠  of  𝐷𝐵 

𝑛𝑤 Total of identifiers 𝑤 

𝑁 ∑ |𝐷𝐵𝑤(𝑤)|𝑖=1
𝑛  where 𝐷𝐵𝑤(𝑤) =  {𝑖𝑑1, . . , 𝑖𝑑𝑛𝑤  } 

𝐻𝑇 A hash table is a data structure that allows efficient storage and retrieval of key-

value pairs. It comprises a pair of algorithms, are "Add" and "Get"[9]. 

𝐴𝑑𝑑 Algorithm adds pairs of (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒)  to 𝐻𝑇 

𝐺𝑒𝑡 value=Get(key) 

𝑆𝑡 String 

Š𝑡 Encrypted string 

𝐸𝐻𝑇 A hash table to store encrypted values  Š𝑡 

𝑆1 Counter counts the number of continuous identifiers in which 𝑤 appears 

𝑆0 Counter counts the number of continuous identifiers in which 𝑤 not appears 

𝑘𝑤 Derivative key to encryption and decryption of St 

𝑙𝑖 Label is used to store and retrieve Š𝑡 in 𝐻𝑇, 𝐴𝑑𝑑(𝑙𝑖, Š𝑡), Š𝑡 = 𝐺𝑒𝑡(𝑙𝑖) 

𝐸𝑛𝑐 Function to encryption 𝑆𝑡 

𝐷𝑒𝑐 Function to decryption  Š𝑡 

  𝑖𝑑𝑠 List to store the final result 

Table 1. Symbols 
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2.  Paper Organization 

The format of this paper is outlined below. In Section 3, we will elaborate on the concepts of 

searchable symmetric encryption. Previous related works will be discussed in Section 4. Our 

proposed scheme will be presented in Section 5, while Section 6 will delve into the details of our 

experimental results. To conclude, we offer our conclusions in the last section, Section 7. 

 

3.  Searchable Symmetric Encryption (SSE)  

      SSE is a technique that enables searching encrypted data while maintaining privacy [[10], [11], 

[12]]. It uses symmetric key cryptography, where the same key is used for both encryption and 

decryption. SSE involves three main components: the data owner 𝐷𝑊, the cloud server 𝐶𝑆, and the 

users The process of SSE comprises five essential steps. See Table 2 for for more details. 

     Firstly, 𝐷𝑊 selects a secret key 𝑘𝑒 to be used for both encryption and decryption. Secondly, 𝐷𝑊 

generates a searchable index 𝑆𝐼 from database 𝐷𝐵 and subsequently applies encryption to 𝑆𝐼 to ensure 

its security. The 𝑆𝐼 is then uploaded to 𝐶𝑆. Thirdly, when a user wants to search for data on the cloud 

server, they generate an encrypted query called a token , using the same secret key. This token is 

then sent to 𝐶𝑆. Fourthly, 𝐶𝑆 receives  from the user and searches for the data in 𝑆𝐼. In the fifth 

step, 𝐶𝑆 returns the search results 𝑟 to the user either encrypted, for the user to decrypt later or 

decrypted and sent to the user. 

4.  Related Works 

        In 2000, a technology was introduced to facilitate searching of encrypted data without requiring 

prior decryption. The system, named "Searchable Symmetric Encryption"[13], empowers users to 

conduct searches for particular keywords within encrypted data while keeping the content secure. 

This marked the genesis of 𝑆𝑆𝐸. After the introduction of this new technology, researchers conducted 

extensive studies across various fields, such as performance optimization. Their findings reveal that 

Algorithm Description 

 

Key generation: 

𝑘𝑒 ←  𝐺𝑒𝑛_𝑘(1𝜆) 

 

The key generation algorithm generates the secret key 𝑘𝑒 

based on the input security parameter1𝜆. 

 

Constructing secure index: 

𝑆𝐼 ← 𝐸𝑛𝑐_𝐷𝐵(𝑘𝑒 , 𝐷𝐵) 

 

The secure index 𝑆𝐼 is constructed by taking the secret key 

𝑘𝑒 and the database 𝐷𝐵 as inputs to this algorithm. 

Token generator: 

 ←  𝑇𝑟𝑝𝑑𝑟(𝑘𝑒 , 𝑤) 

 

 

In this algorithm, the user creates the token   to search for 

data or a specific word 𝑤. 

Search: 

𝑟 ← 𝑆𝑒𝑎𝑟𝑐ℎ(  , 𝑆𝐼) 

 

The process in this algorithm involves the cloud server 

searching for the required data in the secure index and 

returning the result 𝑟 to the user. If the result is encrypted, the 

user must using  𝐹𝑖𝑛𝑑_𝑖𝑑𝑠 algorithm to access it. 

 

Find identifiers: 

𝑖𝑑𝑠 ←  𝐹𝑖𝑛𝑑_𝑖𝑑𝑠(𝑘𝑒 , 𝑟) 

 

The user uses this algorithm to obtain the final result, which 

consists of word identifiers 𝑖𝑑𝑠 after performing any 

necessary processing and deception the result 𝑟. 

Table 2. Searchable symmetric encryption algorithm 



Aya A. Alyousif et al., 

 

106 

 

the decline in performance is not caused by the technology itself but by the server's access to memory 

positions during user request processing. The increase in the encrypted index size results in more 

positions being accessed, ultimately leading to slower response times [14]. This case is referred to as 

poor locality. There are generally two approaches that can be used to classify known constructions.  

     The first approach has constant read efficiency and linear space, but it suffers from poor locality 

as stated in [12] and [14]references. The process involves allocating an array of size 𝑁 and uniformly 

mapping 𝑁 elements from the database into the array. To retrieve a list of 𝐼𝐷𝑠 that contain a given w, 

each 𝑖𝑑 is stored in the array with a pointer to the next 𝑖𝑑 in the list. Unfortunately, this approach 

requires the server to visit random positions in the array for every 𝑖𝑑 associated with w, resulting in 

inefficiency.  

     The second approach is efficient for locality and read efficiency, but it requires a lot of additional 

storage[[15], [16], [17], [18]. This approach involves allocating a large enough array and uniformly 

mapping each 𝐷𝐵𝑤  list into the array based on the length of 𝐷𝐵𝑤  without any overlaps among 

different lists. Retrieving 𝐷𝐵𝑤   for a given w is efficient because the server only needs to access a 

single random position and read all consecutive 𝑖𝑑 entries. This results in optimal read efficiency and 

locality. However, the positions of the lists in the array may expose information about the underlying 

database's structure. As a result, padding must be used to conceal information about the lengths of 

the lists, resulting in a polynomial increase in space overhead. 

    We should emphasize that there is often a problem either with the storage capacity, which is 

typically extensive, or with the locality. This can lead to a decline in the response time of the cloud 

server, and at times there is a bad effect on the read efficiency. Therefore, creating a construction that 

enjoys optimal locality with little storage space and at the same time does not affect its read efficiency 

is not easy, and it may not be possible. Cash and Tessaro [6] discussed this in 2014 and established a 

minimum tradeoff among these three cases. They also created a new construction with improved 

locality to 𝑂(𝑙𝑜𝑔 𝑁) and the storage space was 𝑂(𝑁 𝑙𝑜𝑔 𝑁).  

     Gilad Asharov et al. improved upon Cash and Tessaro's construction in 2016 [7] by achieving 

𝑂(1) locality while maintaining the storage space at O(N log N). In 2017, Demertzis and 

Papamanthou [8]  created two constructions. The first construction had locality 𝑂(1) and used 𝑂(𝑁 𝑠) 

storage space, where 𝑠 is the number of levels utilized to store 𝐼𝐷𝑠. This construction had a negligible 

impact on read efficiency but still demanded a substantial amount of storage space. The second 

construction provided tunable locality, allowing the 𝐷𝑊 to choose a parameter during the creation of 

their index, while operating within the same storage space as the first approach. In 2021, Asharov 

and colleagues [9] made noteworthy advancements by creating two comprehensive frameworks - the 

pad-and-split framework and the statistical-independence framework - that strengthened the lower 

bound set by Cash and Tessaro. 

   Throughout the recent period spanning 2021 to 2023, a multitude of research studies have surfaced 

across diverse domains within SSE, presenting numerous benefits. Nevertheless, all of them continue 

to exhibit a notable deficiency in terms of good locality such as [19]–[24]. 

 

5. Proposed Scheme 

This section will provide a comprehensive explanation of our scheme, where the following 

construction shows our entire scheme. Then we will explain our scheme with more details. See 

construction. 
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CONSTRUCTION: Let  =  {𝐷𝐵𝑤(𝑤1), . . . , 𝐷𝐵𝑤(𝑤𝑛)} , 

𝑊𝑑𝑏 = {𝑤1, . . . , 𝑤𝑛};  For 𝑤 ∈  𝑊𝑑𝑏 let 𝐷𝐵𝑤(𝑤) =  {𝑖𝑑1, . . , 𝑖𝑑𝑛𝑤 } and 𝑛𝑑𝑏 is total of identifiers 

𝐷𝐵. See Table 1. 

𝒌𝒆 ←  𝑮𝒆𝒏_𝒌(𝟏𝝀): 

1. Input Security parameter 1𝜆 

2. Compute the secret key  𝑘𝑒 with 𝑃𝑅𝐹 

3. Output 𝑘𝑒 

 

𝑬𝑯𝑻 ← 𝑬𝒏𝒄_𝑫𝑩(𝒌𝒆, 𝑫𝑩): 

1. Input 𝑘𝑒 and 𝐷𝐵 

2. Initialize empty  𝐻𝑇 , 𝐸𝐻𝑇  and 𝑙 = 0 

3. For every 𝑤 𝜖 𝑊𝑑𝑏 

            𝑆𝑡 = "", 𝑆1 = 0 , 𝑆0 = 0 

            Sort 𝐷𝐵𝑤 

             If 1 in 𝐷𝐵𝑤 

                     Add “y” to 𝑆𝑡 

             Else 

                     Add “n” to 𝑆𝑡     

      For 𝑖 = 1 𝑡𝑜 𝑛𝑑𝑏 

            If 𝑖 in 𝐷𝐵𝑤 

                      𝑆1 = 𝑆1 + 1 

                      If 𝑖 + 1 not in 𝐷𝐵𝑤 or 𝑖 + 1 =  𝑛𝑑𝑏 + 1 

                                           Add 𝑆1 to 𝑆𝑡  

                                          𝑆1 = 0 

                 Else 

                       𝑆0 = 𝑆0 + 1 

                      If 𝑖 + 1  in 𝐷𝐵𝑤 or 𝑖 + 1= 𝑛𝑑𝑏 + 1 

                                         Add 𝑆0 to 𝑆𝑡  

                                         𝑆0 = 0 

              End for 

              𝑖 = 𝑖 + 1        

             If 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝑡)> 𝑙 
             𝑙 =  𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝑡) 

      Add (𝑤, 𝑆𝑡) to 𝐻𝑇 

        End for 

 

4. For every 𝑤 𝜖 𝐻𝑇  
           𝑆𝑡 = 𝐺𝑒𝑡 (𝑤)       

           padding 𝑆𝑡 to 𝑙 with “0” 

    𝑘𝑤 =  𝑃𝑅𝐹𝑘𝑒
(2 ‖ 𝑤) 

    Š𝑡 = 𝐸𝑛𝑐𝑘𝑤
(𝑆𝑡) by AES256 

    Compute  𝑙𝑖 =  𝑃𝑅𝐹𝑘𝑒
(1 ‖  𝑤)  

    Add (𝑙𝑖, Š𝑡) to 𝐸𝐻𝑇 

  End for 

5.  Output 𝐸𝐻𝑇 
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5.1. Key generation phase 𝒌𝒆 ←  𝑮𝒆𝒏_𝒌(𝟏𝝀): 

           To begin, the data owner generates a secret key using the Pseudo-Random Function [[25], 

[26]], it will serve for both encryption and decryption purposes.  

 

 ←  𝑻𝒓𝒑𝒅𝒓(𝒌𝒆, 𝒘): 

1. Input  𝑘𝑒 and 𝑤 

3. Compute  =  𝑃𝑅𝐹𝑘𝑒
(1 ‖  𝑤) = 𝑙𝑖 

4. Output   
Š𝒕 ← 𝑺𝒆𝒂𝒓𝒄𝒉(  , 𝐸𝐻𝑇): 

1. Input    and  𝐸𝐻𝑇 

2. Š𝑡 = 𝐺𝑒𝑡 (𝑙𝑖)       

3. Output Š𝑡 

 
𝒊𝒅𝒔 ←  𝑭𝒊𝒏𝒅_𝒊𝒅𝒔(𝒌𝒆, Š𝒕): 

1.Input 𝑘𝑒 and Š𝑡 

2. 𝑘𝑤 =  𝑃𝑅𝐹𝑘𝑒
(2 ‖ 𝑤) and 𝑆𝑡 = 𝐷𝑒𝑐𝑘𝑤

(Š𝒕) 

3. Initialize empty  𝑖𝑑𝑠 list and 𝑖 = 1 

4. c=0 

5. If the first character in the string matches “n” 

          For from 𝑖 = 2 to length 𝑆𝑡 

                  If 𝑆𝑡 = "0" 

                      Out 

                  If 𝑖 mod 2 is equal 0 

                           convert 𝑆𝑡[𝑖] to 𝑖𝑛𝑡 

                           𝑐 = 𝑐 + 𝑆𝑡[𝑖] 
                  Else 

                            j=c 

                           convert 𝑆𝑡[𝑖] to 𝑖𝑛𝑡 

                           For from 𝑗 to 𝑗 +  𝑆𝑡[𝑖] 
                                     Add 𝑗 to 𝑖𝑑𝑠 

                                    𝑗 = 𝑗 + 1 

End for 

 

Else 

         For from 𝑖 = 2 to length 𝑆𝑡 

                   If 𝑆𝑡 = "0" 

                      Out 

                   If 𝑖 mod 2 is not equal 0 

                           convert 𝑆𝑡[𝑖] to 𝑖𝑛𝑡 

                           𝑐 = 𝑐 + 𝑆𝑡[𝑖] 
                   Else 

                            j=c 

                           convert 𝑆𝑡[𝑖] to 𝑖𝑛𝑡 

                           For from 𝑗 to 𝑗 +  𝑆𝑡[𝑖] 
                                     Add 𝑗 to 𝑖𝑑𝑠 

                                    𝑗 = 𝑗 + 1 

        End for 

 

6. Output 𝑖𝑑𝑠 =  𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟𝑠 
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5.2. Constructing secure index phase 𝑬𝑯𝑻 ← 𝑬𝒏𝒄_𝑫𝑩(𝒌𝒆, 𝑫𝑩):  

           In this phase, the data owner must construct an encrypted index 𝐸𝐻𝑇 for the database. This 

index is created using the words found in the database 𝑊𝑑𝑏 and their corresponding identifiers. So, 

that each 𝑤 is represented by an encrypted string  Š𝑡 that indicates whether it appears or not in the 

identifiers of the database. The plaintext string 𝑆𝑡   is determined by group of the number of 

consecutive identifiers where the word appears and the number of consecutive identifiers where it 

does not appear, across all identifiers in the database. There are two types of 𝑆𝑡 that represent words. 

The first type begins with the letter "y," indicating that the word appears in the first identifier of the 

database 𝑖𝑑1 = 1 and the first number in 𝑆𝑡 represents the total number of consecutive identifiers 

where the word appears. The second type starts with the letter "n," indicating that the word does not 

appear in the first identifier of the database and the first number added to 𝑆𝑡 represents the number 

of consecutive identifiers where the word does not appear. To demonstrate the aforementioned 

concept, consider the following example: 

If 𝑛𝑑𝑏 = 15 and 𝐷𝐵𝑤(𝑤) =  {1,2,3,4,7,8,10,11,12,13,14,15 } In this case 𝑆𝑡 will be 𝑆𝑡 =
"𝑦 4 2 2 1 6", The word is associated with the first four consecutive identifiers (1,2,3,4) represented 

by the number 4, while the following two identifiers (5, 6), represented by the number 2, are not 

associated with the word. The subsequent two identifiers (7, 8), represented by the number 2, are 

associated with the word, and this pattern continues sequentially until all the identifiers are covered. 

In conjunction generating 𝑆𝑡 for all the words, the data owner must calculate the longest 𝑆𝑡. This step 

is crucial as it enables the padding of all 𝑆𝑡 values to match the length of the longest value. This 

process enhances security and mitigates the risk of any data leakage to the cloud server. In sync with 

the padding procedure, the data owner will generate a key 𝑘𝑤 =  𝑃𝑅𝐹𝑘𝑒
(2 ‖ 𝑤) and a label 𝑙𝑖 =

 𝑃𝑅𝐹𝑘𝑒
(1 ‖  𝑤) . The 𝑘𝑤is used to encrypt  𝑆𝑡 value Š𝑡 = 𝐸𝑛𝑐𝑘𝑤

(𝑆𝑡) and 𝑙𝑖 is used to store Š𝑡 in 𝐸𝐻𝑇. 

   The data owner can upload 𝐸𝐻𝑇 to the cloud server once it has been constructed.  

5.3. Token generator phase  ←  𝑻𝒓𝒑𝒅𝒓(𝒌𝒆, 𝒘) and  Search phase  Š𝒕 ←
𝑺𝒆𝒂𝒓𝒄𝒉(  , 𝑬𝑯𝑻):  

            If a user wants to search for a specific word, they must create a token  that represents the 𝑙𝑖 
generated during index construction and send it to the cloud server. Enabling secure data searching 

by the cloud server is dependent on this step. The cloud server can retrieve Š𝑡 from 𝐸𝐻𝑇 once it 

receives   from the user Š𝑡 = 𝐺𝑒𝑡 (𝑙𝑖) and send Š𝑡 to user. 

5.4. Find identifiers phase 𝒊𝒅𝒔 ←  𝑭𝒊𝒏𝒅_𝒊𝒅𝒔(𝒌𝒆, Š𝒕): 

             Upon receipt Š𝑡, the user initiates the decryption process by recomputing 𝑘𝑤 and use it for 

decrypting  𝑆𝑡 = 𝐷𝑒𝑐𝑘𝑤
(Š𝒕). Once the   𝑆𝑡  is obtained, the user will start processing it to find out which 

identifies the word belongs to, according to the steps shown in our construction. 

6. Experimental Results   

      In this section, our scheme is evaluated using a real-world 𝐷𝐵 of Wikipedia articles. We 

conducted our experiments on a 64-bit Windows machine equipped with an Intel Core i5 CPU 

clocked at 1.6 GHz and 8GB RAM. Our database has 𝑛𝑑𝑏 = 2030  and 𝑤 = 555,370. We 

specifically selected 𝐷𝐵 that supports locality because it contains a significant number of 𝐼𝐷𝑠, 

enabling us to observe the impact on retrieval time. We chose to implement the code in Python due 

to its rich feature set and widespread use in the scientific community. 

 

6.1.  Comparison with previous schemes 

     In this section, we will compare our work to four previous schemes that share a similar goal of 

improving locality to enhance performance. These schemes are [[6], [7], [8], [27]]. We executed all 

of these schemes at the outset, prior to beginning the comparison process. In our comparisons, we 

focused on searching three words 𝑤, that vary in the quantity of their identifiers 𝑛𝑤. The first word 
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𝑤1, had 𝑛𝑤 = 2010, the second word 𝑤2 had 𝑛𝑤 = 997, and the last word 𝑤3, had 𝑛𝑤 = 3. The 

results of searching for 𝑤1 and 𝑤2  provide clear evidence of the notable difference in searching speed 

between our work and previous schemes as shown in “Fig. 1”. Moreover, the searching time for 

𝑤3 indicates that our approach enhances the search of words, with a significant number of identifiers 

without compromising the search of words with fewer identifiers as shown in “Fig. 2”. To ensure a 

fair comparison with previous works that did not include a 𝐹𝑖𝑛𝑑_𝑖𝑑𝑠 phase, we have included the 

time required for this phase along with the research time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Comparing the search time required to find 𝑊1 and 𝑊2 in our scheme to that of previous 

schemes. 

Figure 2: Comparison of search time for W3 in our scheme versus previous schemes. 
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7. Conclusion 

     Our main objective for this work is to improve the overall performance of the searchable 

symmetric encryption.  Specifically, we are targeting a problem related to large databases, namely 

the issue of poor locality caused by frequent memory movements by the cloud server during the 

search phase. To solve this problem, we have implemented modifications to the inverted index storage 

mechanism, leading to a significant improvement in the search performance in the large database. 

Our modifications have optimized locality to 𝑂(1) without any impact on the reading efficiency, 

which continues to be at 𝑂(1). Furthermore, this change has not led to a significant increase in the 

encrypted index's storage space. Our work ensures a high level of security since the server does not 

decrypt the data but forwards the encrypted data to the user for decryption. Furthermore, the values 

stored on 𝐶𝑆 uniform in size and do not reveal 𝐼𝐷𝑠 themselves. These values serve as evidence to 

retrieve 𝐼𝐷𝑠 later. 
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 التشفير المتماثل القابل للبحث بواسطة المحلية المثلىتحسين  

 2,3,4Ke Xu ,3,1، زيد امين عبد الجبار1*، علي عادل ياسين1اية عبد الحسين اليوسف 

 
 .العراق البصرة، البصرة،جامعة  الصرفة،قسم علوم الحاسوب، كلية التربية للعلوم 1
 .مينزو ، ووهان ، الصينب ، جامعة الجنوب المركزية وكلية علوم الحاس 2
 .معهد شينزين للبحوث بجامعة هواتشونغ للعلوم والتكنولوجيا ، شينزين  ، الصين3
 .جامعة شينزين  الافتراضية ، شينزين  ، الصين 4

 معلومات البحث  الملخص  

بياناتهم.   يضع كل من الأفراد والمؤسسات قيمة عالية لحماية أمان وخصوصية 

الأولوية   تعطي  التي  التكنولوجية  الحلول  على  متزايد  تركيز  هناك  لذلك،  نتيجة 

اهم الخيارات البارزة    للبحث، أحدللخصوصية والأمان، يعد التشفير المتماثل القابل  

خاصة    التحديات،بعض    SSEيواجه    عديدةالفي هذا المجال. على الرغم من فوائده  

مع   التحديات  أحد  الكبيرة.  البيانات  قواعد  مع  التعامل  الأداء    SSEعند  هو 

التي تكون    الضعيف، المحلية الضعيفة  المنطقة  الخادم   نتيجة لزيارةغالباً بسبب 

السحابي لمواقع ذاكره متعددة عند البحث عن البيانات تؤدي لزيادة كبيرة في الوقت  

يمكن أن تؤثر طرق التحسين التي    ذلك،لمطلوب لاسترداد البيانات. بالإضافة إلى  ا

تهدف إلى تحسين الموقع في بعض الأحيان على كفاءة القراءة أو تؤدي إلى تخزين 

  ى الخادم السحابي. في هذا البحث، نقدم مخططً مفرط للفهرس المشفر المخزن عل

قمنا بتحسين آلية تخزين   ذلك،على  يعمل على حل هذه المشكلات بنجاح. علاوة  

الفهرس المقلوب المشفر لتحسين أداء استرجاع المعلومات. يحقق مخططنا الموقع  

( في  القراءة  وكفاءة  سرعة  O (1الأمثل  في  كبيرة  زيادة  إلى  يؤدي  مما   ،

الاسترجاع. أثبتت تجربتنا مع بيانات العالم الحقيقي مدى التطبيق العملي والدقة  

 هجنا، مما يجعله حلاً موثوقاً به لاسترجاع المعلومات بشكل آمن وفعال. والأمان لمن 

 2023نيسان  25الاستلام        

 2023حزيران  10القبول            

 2023حزيران  30النشر            

 الكلمات المفتاحية  

المنطقة المحلية ، المنطقة المحلية   

للبحث  المثلى ، التشفير المتماثل القابل 

 .، الفهرس المقلوب لخادم السحابي، ا

 

 

 

 

Citation: Aya A. Alyousif et 

al., J. Basrah Res. (Sci.) 49 

(1), 102 (2023). 

DOI:https://doi.org/10.56714/

bjrs.49.1.9 

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56714/bjrs.49.1.9
https://creativecommons.org/licenses/by/4.0/
https://jou.jobrs.edu.iq/
https://doi.org/10.56714/bjrs.49.1.9
https://doi.org/10.56714/bjrs.49.1.9

