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1. Introduction

Both individuals and organizations prioritize data
security and privacy, leading to an increasing focus on
technological solutions that emphasize these aspects.
Searchable symmetric encryption stands out as a
prominent choice for secure storage and search of
encrypted data on cloud servers, contributing to this
objective. While searchable symmetric encryption
offers numerous benefits, it also faces certain
challenges, particularly when dealing with large
databases. One significant challenge is poor
performance, often attributed to poor locality. Visiting
multiple locations can significantly increase the time
required for data retrieval. Additionally, optimization
methods aimed at improving locality can sometimes
impact read efficiency or result in excessive storage of
the encrypted index on the cloud server. In this paper,
we present a scheme that effectively addresses these
issues. We have enhanced the encrypted inverted index
storage mechanism to improve information retrieval
performance. Our scheme achieves optimal locality
0O(1) and optimal read efficiency in O(1), resulting in
a significant increase in retrieval speed. Through
experimentation with real-world data, we have
demonstrated the practicality, accuracy, and security of
our scheme.

In the era of information technology and Internet, we are generating more data than ever before,
and this trend is only set to continue. For businesses, individuals, and organizations, the ability to
store, access, and manage this data efficiently is essential. In response, cloud storage has become a
popular solution due to its many advantages over traditional forms of data storage [1][2]. It is a
method of storing data on remote servers that can be accessed from any internet-connected device
anywhere in the world. This results in data being stored in a centralized location that is easily
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accessible. The greatest benefit of cloud storage is its flexibility of storage. Unlike traditional storage
methods, it is not restricted by physical storage devices and offers virtually limitless storage capacity.
This makes it an excellent choice for all parties involved in the storage process, from businesses to
individuals.

Cloud storage offers not just superior storage capabilities, but also exceptional reliability. Cloud
storage providers utilize redundant storage systems and multiple data centers located in different
geographic locations, guaranteeing data accessibility even in the face of natural disasters or hardware
failures. With cloud storage, companies can rest assured that their data is secure and accessible at all
times, precisely when they need it.

To guarantee the security of data kept on cloud servers, a variety of techniques must be utilized,
such as access management, network protection, and encryption [3]. Access management is a system
that restricts data access based on user identity, position, or authorization. Network security includes
safeguarding the network infrastructure used for data transfer. Encryption, conversely, is the
procedure of converting data into a code to avoid unauthorized access. Encryption can be
implemented both while in transit and at rest, ensuring that data remains safe throughout transmission
and storage.

Several encryption techniques are available to secure data stored in the cloud server, including
symmetric encryption, hashing, and searchable symmetric encryption (SSE) [4]. SSE is an encryption
technique that enables authorized users to search for specific information in an encrypted database
without compromising the confidentiality of the data to unauthorized individuals. However, SSE
encounters various obstacles. It is a comparatively intricate procedure that entails searching within
encrypted data and requires constructing and maintaining an index structure. This can consume
significant time and resources. Moreover, there are security concerns related to the possibility of
exposing confidential information [5].

SSE has recently been found to suffer from performance degradation and weakness in the
retrieval process when handling huge databases. Further research has revealed that the cause of this
issue is not related to the encryption process, but rather to the method used to store the index in
memory. Storing the index structure in memory forces the cloud server to perform a series of memory
transitions, commonly referred to as "poor locality" [4][6][7][8][9], during the search process for a
user's query. These transitions can significantly slow down the retrieval of encrypted data and
adversely affect the performance of SSE. Numerous researchers have shown interest in enhancing
the performance in huge databases through locality optimization. However, this optimization process
has been observed to potentially have negative impacts on both the storage space of data and the read
efficiency of data. We can summarize our contributions as follows:

e Our scheme enhances information retrieval performance for all databases, regardless of their
scale, by improving locality.

e Our scheme achieves optimal locality of 0(1), which implies that during each search operation,
the cloud server only needs to access a single memory location, as opposed to multiple locations.

e Our suggested scheme is exceptionally secure as the server looks for the required data and
delivers it to the user without decrypting it.

e Our scheme does not greatly increase the size of the encrypted index stored in the cloud server.

e Lastly, our scheme is highly read efficiency 0(1) , where the cloud server only responds with
the requested data when the user queries it.
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Table 1. Symbols

Character Description
w Word
n Number of words
Wy Words in DB, Wy, = {wy,...,w,}
id Identifier
IDs Identifiers
ndb Total IDs of DB
nw Total of identifiers w
N i=1|DB,,(w)| where DB,,(w) = {idy,..,idp }
HT A hash table is a data structure that allows efficient storage and retrieval of key-
value pairs. It comprises a pair of algorithms, are "Add" and "Get"[9].
Add Algorithm adds pairs of (key, value) to HT
Get value=Get(key)
St String
St Encrypted string
EHT A hash table to store encrypted values St
S1 Counter counts the number of continuous identifiers in which w appears
S0 Counter counts the number of continuous identifiers in which w not appears
kw Derivative key to encryption and decryption of St
li Label is used to store and retrieve St in HT, Add(li, St), St = Get(li)
Enc Function to encryption St
Dec Function to decryption St
ids List to store the final result
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Table 2. Searchable symmetric encryption algorithm

Algorithm Description

Key generation: The key generation algorithm generates the secret key k.,
ke <« Gen_k(1%) based on the input security parameter1?.

Constructing secure index: The secure index ST is constructed by taking the secret key
Sl « Enc_DB(k,,DB) k. and the database DB as inputs to this algorithm.

Token generator: In this algorithm, the user creates the token 7 to search for
7 < Trpdr(k,,w) data or a specific word w.

Search: The process in this algorithm involves the cloud server
r « Search(r ,SI) searching for the required data in the secure index and

returning the result r to the user. If the result is encrypted, the
user must using Find_ids algorithm to access it.

Find identifiers: The user uses this algorithm to obtain the final result, which
ids « Find_ids(k,,1) consists of word identifiers ids after performing any
necessary processing and deception the result r.

2. Paper Organization

The format of this paper is outlined below. In Section 3, we will elaborate on the concepts of
searchable symmetric encryption. Previous related works will be discussed in Section 4. Our
proposed scheme will be presented in Section 5, while Section 6 will delve into the details of our
experimental results. To conclude, we offer our conclusions in the last section, Section 7.

3. Searchable Symmetric Encryption (SSE)

SSE is a technique that enables searching encrypted data while maintaining privacy [[10], [11],
[12]]. It uses symmetric key cryptography, where the same key is used for both encryption and
decryption. SSE involves three main components: the data owner DW, the cloud server CS, and the
users The process of SSE comprises five essential steps. See Table 2 for for more details.

Firstly, DW selects a secret key k. to be used for both encryption and decryption. Secondly, DW
generates a searchable index SI from database DB and subsequently applies encryption to SI to ensure
its security. The SI is then uploaded to CS. Thirdly, when a user wants to search for data on the cloud
server, they generate an encrypted query called a token z, using the same secret key. This token is
then sent to CS. Fourthly, CS receives zfrom the user and searches for the data in SI. In the fifth
step, CS returns the search results r to the user either encrypted, for the user to decrypt later or
decrypted and sent to the user.

4. Related Works

In 2000, a technology was introduced to facilitate searching of encrypted data without requiring
prior decryption. The system, named "Searchable Symmetric Encryption"[13], empowers users to
conduct searches for particular keywords within encrypted data while keeping the content secure.
This marked the genesis of SSE. After the introduction of this new technology, researchers conducted
extensive studies across various fields, such as performance optimization. Their findings reveal that
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the decline in performance is not caused by the technology itself but by the server's access to memory
positions during user request processing. The increase in the encrypted index size results in more
positions being accessed, ultimately leading to slower response times [14]. This case is referred to as
poor locality. There are generally two approaches that can be used to classify known constructions.

The first approach has constant read efficiency and linear space, but it suffers from poor locality
as stated in [12] and [14]references. The process involves allocating an array of size N and uniformly
mapping N elements from the database into the array. To retrieve a list of IDs that contain a given w,
each id is stored in the array with a pointer to the next id in the list. Unfortunately, this approach
requires the server to visit random positions in the array for every id associated with w, resulting in
inefficiency.

The second approach is efficient for locality and read efficiency, but it requires a lot of additional
storage[[15], [16], [17], [18]. This approach involves allocating a large enough array and uniformly
mapping each DB, list into the array based on the length of DB, without any overlaps among
different lists. Retrieving DB,, for a given w is efficient because the server only needs to access a
single random position and read all consecutive id entries. This results in optimal read efficiency and
locality. However, the positions of the lists in the array may expose information about the underlying
database's structure. As a result, padding must be used to conceal information about the lengths of
the lists, resulting in a polynomial increase in space overhead.

We should emphasize that there is often a problem either with the storage capacity, which is
typically extensive, or with the locality. This can lead to a decline in the response time of the cloud
server, and at times there is a bad effect on the read efficiency. Therefore, creating a construction that
enjoys optimal locality with little storage space and at the same time does not affect its read efficiency
is not easy, and it may not be possible. Cash and Tessaro [6] discussed this in 2014 and established a
minimum tradeoff among these three cases. They also created a new construction with improved
locality to O(log N) and the storage space was O(N log N).

Gilad Asharov et al. improved upon Cash and Tessaro's construction in 2016 [7] by achieving
0(1) locality while maintaining the storage space at O(N log N). In 2017, Demertzis and
Papamanthou [8] created two constructions. The first construction had locality O (1) and used O(N s)
storage space, where s is the number of levels utilized to store IDs. This construction had a negligible
impact on read efficiency but still demanded a substantial amount of storage space. The second
construction provided tunable locality, allowing the DW to choose a parameter during the creation of
their index, while operating within the same storage space as the first approach. In 2021, Asharov
and colleagues [9] made noteworthy advancements by creating two comprehensive frameworks - the
pad-and-split framework and the statistical-independence framework - that strengthened the lower
bound set by Cash and Tessaro.

Throughout the recent period spanning 2021 to 2023, a multitude of research studies have surfaced
across diverse domains within SSE, presenting numerous benefits. Nevertheless, all of them continue
to exhibit a notable deficiency in terms of good locality such as [19]-[24].

5. Proposed Scheme

This section will provide a comprehensive explanation of our scheme, where the following
construction shows our entire scheme. Then we will explain our scheme with more details. See
construction.
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CONSTRUCTION: Let = {DB,,(w;),...,DB,,(wy,)},

Wap = {wyq,...,wy}; Forw € Wy, let DB, (w) = {id4,..,idy, } and ndb is total of identifiers
DB. See Table 1.

k. —« Gen_k(1%):

1. Input Security parameter 1%

2. Compute the secret key k, with PRF

3. Output k,,

EHT < Enc_DB(k., DB):

1. Input k., and DB

2. Initialize empty HT , EHT andl =0

3. Foreveryw e Wy,
St="",81=0,50=0

Sort DB,
If1in DB,
Add “y” to St
Else
Add “n” to St
Fori =1 tondb
If i in DB,
S1=S81+1
Ifi+1notinDB,ori+1= ndb+1
Add 51 to St
S1=0
Else
S0=S0+1
Ifi+1 inDB,ori+1=ndb+1
Add S0 to St
S0=0
End for
i=i+1
If length(St)>1

[ = length(St)
Add (w, St)to HT
End for

4. Foreverywe HT
St = Get (w)
padding St to [ with “0”
ky = PRF, (2] w)
St = Ency, (St) by AES256
Compute li = PRFy, (1] w)
Add (li, St) to EHT

End for
5. Output EHT
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7 « Trpdr(k,, w):

1. Input k., and w

3.Compute 7 = PRF, (1| w) =1i
4. Output 7

St « Search(r ,EHT):

1. Input z and EHT

2. St = Get (li)

3. Output St

ids < Find_ids(k,,St):
1.Input k, and St
2. ky, = PRF, (2 ||w)and S, = Decy, (S¢)
3. Initialize empty ids listand i = 1
4.c=0
5. If the first character in the string matches “n”
For from i = 2 to length St
IfSt="0"
Out
If i mod 2 is equal 0
convert St[i] to int
c =c + St[i]
Else
j=c
convert St[i] to int
For fromj toj + St[i]
Add j to ids
j=j+1
End for

Else
For from i = 2 to length St
If St ="0"
Out
If i mod 2 is not equal 0
convert St[i] to int
c =c+ St[i]
Else
j=c
convert St[i] to int
For fromjtoj + St[i]
Add j to ids
j=j+1
End for

6. Output ids = identifiers

5.1. Key generation phase k, < Gen_k(1%):

To begin, the data owner generates a secret key using the Pseudo-Random Function [[25],
[26]], it will serve for both encryption and decryption purposes.
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5.2. Constructing secure index phase EHT < Enc_DB(k.,DB):

In this phase, the data owner must construct an encrypted index EHT for the database. This
index is created using the words found in the database Wy, and their corresponding identifiers. So,
that each w is represented by an encrypted string St that indicates whether it appears or not in the
identifiers of the database. The plaintext string St is determined by group of the number of
consecutive identifiers where the word appears and the number of consecutive identifiers where it
does not appear, across all identifiers in the database. There are two types of St that represent words.
The first type begins with the letter "y," indicating that the word appears in the first identifier of the
database id; = 1 and the first number in St represents the total number of consecutive identifiers
where the word appears. The second type starts with the letter "n," indicating that the word does not
appear in the first identifier of the database and the first number added to St represents the number
of consecutive identifiers where the word does not appear. To demonstrate the aforementioned
concept, consider the following example:

If ndb =15 and DB, (w) = {1,2,3,4,7,8,10,11,12,13,14,15} In this case St will be St =
"y 42216", The word is associated with the first four consecutive identifiers (1,2,3,4) represented
by the number 4, while the following two identifiers (5, 6), represented by the number 2, are not
associated with the word. The subsequent two identifiers (7, 8), represented by the number 2, are
associated with the word, and this pattern continues sequentially until all the identifiers are covered.
In conjunction generating St for all the words, the data owner must calculate the longest St. This step
is crucial as it enables the padding of all St values to match the length of the longest value. This
process enhances security and mitigates the risk of any data leakage to the cloud server. In sync with
the padding procedure, the data owner will generate a key k,, = PRF; (2 || w)and a label li =

PRF (1| w).Thek,isusedtoencrypt St value St = Ency,, (St) and li is used to store Stin EHT.
The data owner can upload EHT to the cloud server once it has been constructed.

5.3. Token generator phase t < Trpdr(k.,w) and Search phase St «
Search(t ,EHT):

If a user wants to search for a specific word, they must create a token zthat represents the li
generated during index construction and send it to the cloud server. Enabling secure data searching
by the cloud server is dependent on this step. The cloud server can retrieve St from EHT once it
receives 7 from the user St = Get (li) and send St to user.

5.4. Find identifiers phase ids < Find_ids(k,,St):

Upon receipt St, the user initiates the decryption process by recomputing k., and use it for
decrypting S; = Decy, (Sp). Once the S, is obtained, the user will start processing it to find out which
identifies the word belongs to, according to the steps shown in our construction.

6. Experimental Results

In this section, our scheme is evaluated using a real-world DB of Wikipedia articles. We
conducted our experiments on a 64-bit Windows machine equipped with an Intel Core i5 CPU
clocked at 1.6 GHz and 8GB RAM. Our database has ndb = 2030 andw = 555,370. We
specifically selected DB that supports locality because it contains a significant number of IDs,
enabling us to observe the impact on retrieval time. We chose to implement the code in Python due
to its rich feature set and widespread use in the scientific community.

6.1. Comparison with previous schemes

In this section, we will compare our work to four previous schemes that share a similar goal of
improving locality to enhance performance. These schemes are [[6], [7], [8], [27]]. We executed all
of these schemes at the outset, prior to beginning the comparison process. In our comparisons, we
focused on searching three words w, that vary in the quantity of their identifiers nw. The first word
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wy, had nw = 2010, the second word w, had nw = 997, and the last word ws, had nw = 3. The
results of searching for w; and w, provide clear evidence of the notable difference in searching speed
between our work and previous schemes as shown in “Fig. 1”. Moreover, the searching time for
wj indicates that our approach enhances the search of words, with a significant number of identifiers
without compromising the search of words with fewer identifiers as shown in “Fig. 2”. To ensure a
fair comparison with previous works that did not include a Find_ids phase, we have included the

time required for this phase along with the research time.

0.35
0.3
0.25
é 0.2
@
£ 0.15
g 0.1
0 . —_—
Demertzis
Cash et Cash and Asharov and
Tessaro Papamant Ouer work
al.[27] [6] etal. [7] hou L=1

[8]
mwi 0.16762  0.100961 0.089523  0.306759  0.004
mw2 0080168 0.052355 0.051532  0.208972  0.001702

Fig. 1: Comparing the search time required to find W1 and W2 in our scheme to that of previous

Cash et al [27]
= Cash and Tessaro [6]
Asharov et al. [7]

Demertzis and Papamanthou L=1 [8]

= Quer work

Figure 2: Comparison of search time for W3 in our scheme versus previous schemes.
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7. Conclusion

Our main objective for this work is to improve the overall performance of the searchable
symmetric encryption. Specifically, we are targeting a problem related to large databases, namely
the issue of poor locality caused by frequent memory movements by the cloud server during the
search phase. To solve this problem, we have implemented modifications to the inverted index storage
mechanism, leading to a significant improvement in the search performance in the large database.
Our modifications have optimized locality to O(1) without any impact on the reading efficiency,
which continues to be at 0(1). Furthermore, this change has not led to a significant increase in the
encrypted index's storage space. Our work ensures a high level of security since the server does not
decrypt the data but forwards the encrypted data to the user for decryption. Furthermore, the values
stored on CS uniform in size and do not reveal IDs themselves. These values serve as evidence to
retrieve IDs later.
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