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1. Introduction

Cartan’s structure equations play an important role in Riemannian geometry. According to this
important role many researchers determined the first group of Cartan’s structure equations (15¢-CSE).
So, some of them can mentioned as Kirichenko [1] derived the 15¢-CSE of almost contact metric
manifolds that classified by Chinea and Gonzalez [2]. Volkova [3] given the 15¢-CSE of normal class
of Killing type (briefly CNK-class). Umnova [4] deduced the 15¢-CSE of Kenmotsu manifolds and
nearly Kenmotsu (generalized Kenmotsu) manifolds. Dondukova [5] established the 15t-CSE of
cosymplectic manifolds and Sasakian manifolds. The studying of the 15¢-CSE continued up to now by
many authors, especially Rustanov et al. in [6, 7, 8].

2. Preliminaries

We denote by M?"*1 and g, the smooth manifold M of dimension 2n + 1 and the Riemannian
metric respectively. Note that X (M) is the module of whole vector fields on M.

Definition 2.1. [2] If a Riemannian manifold (M?"*1, g) is provided by a triple of a structure tensor
(&,n, @), where @ is a (1, 1)-tensor over M, ¢ is a vector field on M and n is a 1-form of M, such that
vV U,V € X(M), the following hold:

PE)=0; N =1 ned=0; P*+id=nQE;
g(@Uu,dvV) +nUnWV) =gU,V),
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then it is called an almost contact metric (ACM-) manifold and denoted by (M2"+1,&, 7, ®, g).

There are several classes of ACM-manifolds (M2"*1,&,n, @, g). We refer to some of these classes as
the following:

Classes Defining conditions
Cosymplectic [9] Vy(@)Y =0
l[\i%a]\rly cosymplectic V(@)Y + Uy ()X = 0
Kenmotsu [11] V(@)Y = —g(X,®Y)¢ —n(Y)PX
Sasakian [12] V(@)Y =gX,Y)¢ —n(V)X
Co [8] V(@)Y = n(Y)Vpxé — g(DX,Vy$)E
C11 [6] V(@)Y =n(X)P o Vf(d))d)y
C12 [13] Vx (@)Y = —n(X){n(V)P(V:E) + g(Ves, @Y)E}
CNK [3] Normal and Vx(n)Y + Vy ()X =0
Nearly Kenmotsu [14] Vy(@)Y + Vy (@)X = —n(Y)DPX —n(X)dY
NCyo [15] V(@)Y + Vy (D)X
= {Vx (MY + EVy () PX + n(X)Veyé + n(Y)Veyxé
NCy4 [7] V(@)Y + Vy (D)X = n(X)® o Ve(@)DY + (V)P o Ve (D)X
Kenmotsu type [16] V(@)Y — Vox(@)PY = —n(V)DX

for all X,Y € X(M), where V is the Levi-Civita connection (Riemannian connection). Moreover, an
ACM-manifold (M?"*1,&,n, @, g) is called normal if 2N + ¢ @ dn = 0, where

N(X,Y) = i([cpx, ®Y] + ®2[X, Y] — ®[DX,Y] — D[X, cpY]),

is the Nijenhuis tensor of the structure tensor @ (see [3]).

Theorem 2.2. [17] (Cartan’s structure equations) Suppose that (M™, g) is Riemannian manifold, 6 is the
connection form of Riemannian connection V, R is Riemannian curvature tensor of type (3, 1) and
{wl,..., 0"} is the dual frame to the basis frame {E;, ..., E,} of X(M). Then the following hold:

(1) dw' = -6} A o; (first group)
(2) d6} = -0} A O + %R]"-k, w* A w!, (second group)
where 9} and R}kl are the components of 8 and R respectively, whereas, i,j, k,l = 1,...,n.

On the other hand, Kirichenko [1] introduced a new method called associated G-structure space, such
that the tensors g and @ of ACM-manifold M2™*1 are given in the following formulae [18]:

o o o

0o 0 0 /—11 0
0 L) (o) = "
0 0 0 - /—1In

where k,l = 0,1,...,2n and I,, is n X n identity matrix.

(gr) =

S QO ¥
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Moreover, on the associated G-structure space, Kirichenko [1] constructed the first group of Cartan’s
structure equations of Theorem 2.2 in the forms of theorem below.

Theorem 2.3. [19] Suppose that (M?"*1,&,7,®,g) is an ACM-manifold. Then the first group of
Cartan’s structure equations on associated G-structure space is given by:

(1) dw® = —6% A w? + B, w° A wp, + B*° wy Aw, + B% w A w®? + B w A wy, ;
(2 dwg = 0% Awp + By w. AP + By 0 A+ B2 w Awy + By, o A @ ;
(3) dw = Cp, W’ A 0° + CP° wp A w, + C2 w° Awp, + Cp 0 A @w? + CP @ A wy,
where C? = B2, — B}.

3. Structure Equations of Chinea and Gonzalez Classes

This section specified to determined Cartan’s structure equations of certain irreducible classes of
ACM-manifolds that mentioned in Chinea and Gonzalez classification [2]. Precisely, this section
devoted to determined Cartan’s structure equations of cosymplectic class, Kenmotsu class, Sasakian
class, Cq —class, C;; —class, and C;, —class respectively as follow:

Theorem 3.1. [5] The first group of structure equations of Cartan for cosymplectic manifolds are given
by:

1. do®=-68Nw?;
2. dwg =0 Awy;
3. dw=0.

Theorem 3.2. [5] The first group of structure equations of Cartan for Kenmotsu manifolds are given
by:

1. do®*=-0N0? +w Ao

2. dwy=0Nw,+ wAwg;

3. dw=0.

Theorem 3.3. [5] The first group of structure equations of Cartan for Sasakian manifolds are given by:
1. da)a=—9§/\a)b—\/—_1w/\wa;

2. dwg=60Aw, +V-1wAwg,;

3. dw=-2v-1w*Aw,.

Theorem 3.4. [8] The first group of structure equations of Cartan for Co-manifolds are given by:
1. dw®=—-0fAw?+FP o, Aw;

2. dwg=0Nw,+ Fyp 0 Aw;

3. dw=0,

where Feb = Fba; [ —=F, . F, = Fab

Theorem 3.5. [6] The first group of structure equations of Cartan for C,;-manifolds are given by:

1. do®*=—-02ANw?+ B wAw,,

2. dwg=0Aw,+ By 0 AP
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3. dw=0,

where B% = —BY®; B, = —B,,; B, = B,

Theorem 3.6. [13] The first group of structure equations of Cartan for C;,-manifolds are given by:
1. do®=—-6Aw?;

2. dw, =0 ANwy;

3. dw=C,wAw?+ClwAw,.

4. Cartan's Structure Equations of Not Irreducible Classes

This section specified to determined Cartan’s structure equations of certain classes of ACM-
manifolds which are not irreducible. Precisely, this section devoted to determined Cartan’s structure
equations of CNK-class, nearly Kenmotsu class, NC;-class, NC;-class, nearly cosymplectic class, and
Kenmotsu type class respectively as follow:

Theorem 4.1. [3] The first group of structure equations of Cartan for CNK-class on the space of
associated G-structure are given by:

1. dw®=-02Aw’+BY? v Aw, — B} 0’ Aw;
2. dwg =0 Aw,+BS w, A w? —BL w, Aw;
3. dw= ZB% W A wp,

where B} = —B)".

Theorem 4.2. [14] The first group of structure equations of Cartan for nearly Kenmotsu manifolds on
the space of associated G-structure are given by:

3
1. dwa=—Gl‘,‘/\wb+Cawab/\wC+5Fabwb/\w—w“/\w;

—pb b cy 3 b .
2. dwg =0 ANwp+ Copc 0’ Aw +5Faba) ANw— w, \w;
3. dw=Fy 0*Aw?+F® w, Awp,

where F® 4 Fb@ = 0;  F,, + Fpy = 0; Clo0¢l = €3¢ Clopy = Capes F =Fpp; €€ =
Cabc-

Theorem 4.3. [15] The first group of structure equations of Cartan for NC,,- manifolds on the space of
associated G-structure are given by:

1. do®*=—-0Nw?+ C% vy, Aw, + F? w, A w;
2. dwg=0Awp+ Chpe 0? AW + Fyp 0? Aw;
3. dw=Fuy 0*Aw? +F® w, Awpy,

where F + FP® = 0;  Fo,+ Fpq = 0; Cl® =6 €l = Copes FO = Fpy; €96 =
Cabc-

Theorem 4.4. [7] The first group of structure equations of Cartan for NC; - manifolds on the space of
associated G-structure are given by:

1. do®*=—602ANwP?+ B* vy Aw. +BY? wAwy;
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2. dwg=0Aw, + Bgye wP Ao + By, 0 A w?;
3. dw=0,

where B% 4+ BY@ =0; B, +By,=0; B4 =B B0 =By B =
Bap; B¢ = Bgp.

Theorem 4.5. [10] The first group of structure equations of Cartan for nearly cosymplectic manifolds
on the space of associated G-structure are given by:

3

1. dwa:—HgAwb+Cawab/\wC+EF“bwb/\w;
3

2. dwg=0Aw,+ Chpe 0? AwE +>Fap w? Aw;

3. dw=Fy 0*Aw?+F® w, Awy,

where F + FP@ = 0;  Fup+Fpa=0; Cl =% Cpppq = Cope; F2 = Fyp; €€ =
Cabc-

Theorem 4.6. [16] The manifold of Kenmotsu type has the following Cartan’s structure equations (first
group):

1. do®*=—-02Nw?+ B 0 Aw, — 0 A w;
2. dwg =0 Aw,+ Byt w. AwP — w, Aw;

3. dw=0.
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