Theoretical Approach to Investigate the Band Structure of Multilayers Armchair Graphene Nanoribbons (MLAGNRs)
DOI:
https://doi.org/10.56714/bjrs.50.1.8Keywords:
Multilayers Armchair Graphene Nanoribbon (MLAGNRs), Band Structure, Energy Gap, Tight Binding ApproximationAbstract
The electronic band structure for the stacked multilayer armchair graphene nanoribbon (MLAGNRs) is presented theoretically by using the generalized effective long-wave Hamiltonian and the tight-binding approximation. The relation between the energy gap and the number of layers in a wide range of energies around Fermi's energy level is calculated numerically. The energy of the electron depends on the momentum is investigated for an arbitrary number of layers for the armchair graphene nanoribbon having number of layers n = 1, 2 and 3 with the stacking ABC. We find, in agreement with previous calculations, that MLAGNRs are changeable from conducting to semiconducting according to the number of stacked layers and the width of the armchair graphene nanoribbons. Our results revealed the behavior of the flat electronic bands for ABC-stacked multilayer armchair graphene nanoribbon at the K-point around Fermi’s energy level. This study may be useful in various forms of graphene’s physics. Thus, it emphasized the possibility of controlling the electronic properties as required by the techniques based on these nanomaterials
Downloads
References
K. S. Novoselov, A. K. Geim, S. V. Morozov, D.-e. Jiang, Y. Zhang, S. V. Dubonos, et al., "Electric field effect in atomically thin carbon films," science, vol. 306, pp. 666-669, 2004.Doi:https://doi.org/10.1126/science.1102896
Y. Zhang, J. P. Small, M. E. Amori, and P. Kim, "Electric field modulation of galvanomagnetic properties of mesoscopic graphite," Physical review letters, vol. 94, p. 176803, 2005.Doi:https://doi.org/10.1103/PhysRevLett.94.176803
C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, et al., "Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics," The Journal of Physical Chemistry B, vol. 108, pp. 19912-19916, 2004.Doi:https://doi.org/10.1021/jp040650f
J. S. Bunch, Y. Yaish, M. Brink, K. Bolotin, and P. L. McEuen, "Coulomb oscillations and Hall effect in quasi-2D graphite quantum dots," Nano letters, vol. 5, pp. 287-290, 2005.Doi:https://doi.org/10.1021/nl048111+
W. Bao, Z. Zhao, H. Zhang, G. Liu, P. Kratz, L. Jing, et al., "Magnetoconductance Oscillations in High-Mobility Suspended Bilayer and Trilayer Graphene," arXiv preprint arXiv:1005.0033, 2010. Doi:https://doi.org/10.48550/arXiv.1005.0033
S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, et al., "Dimensional crossover of thermal transport in few-layer graphene," Nature materials, vol. 9, pp. 555-558, 2010. Doi:https://doi.org/10.1038/nmat2753
K. Novoselov, S. Morozov, T. Mohinddin, L. Ponomarenko, D. C. Elias, R. Yang, et al., "Electronic properties of graphene," physica status solidi (b), vol. 244, pp. 4106-4111, 2007.Doi:https://doi.org/10.1002/pssb.200776208
S. Reich, C. Thomsen, and J. Maultzsch, Carbon nanotubes: basic concepts and physical properties: John Wiley & Sons, 2008.
K. Wakabayashi, K.-i. Sasaki, T. Nakanishi, and T. Enoki, "Electronic states of graphene nanoribbons and analytical solutions," Science and technology of advanced materials, vol. 11, p. 054504, 2010. Doi:https://doi.org/10.1088/1468-6996/11/5/054504
K. Wakabayashi and S. Dutta, "Nanoscale and edge effect on electronic properties of graphene," Solid state communications, vol. 152, pp. 1420-1430, 2012.Doi:https://doi.org/10.1016/j.ssc.2012.04.025
D. M. T. Kuo, "Effects of zigzag edge states on the thermoelectric properties of finite graphene nanoribbons," Japanese Journal of Applied Physics, vol. 61, p. 075001, 2022.Doi:https://doi.org/10.35848/1347-4065/ac7274
Y.-W. Son, M. L. Cohen, and S. G. Louie, "Half-metallic graphene nanoribbons," Nature, vol. 444, pp. 347-349, 2006. Doi:https://doi.org/10.1038/nature05180
L. Yang, M. L. Cohen, and S. G. Louie, "Magnetic edge-state excitons in zigzag graphene nanoribbons," Physical review letters, vol. 101, p. 186401, 2008.Doi:https://doi.org/10.1103/PhysRevLett.101.186401
H. Min and A. H. MacDonald, "Electronic structure of multilayer graphene," Progress of Theoretical Physics Supplement, vol. 176, pp. 227-252, 2008.Doi:https://doi.org/10.1143/PTPS.176.227
S. Che, Quantum Transport in Few-layer Graphene: The Ohio State University, 2019.
M. Majid and S. Savinskii, "Variation of electron spectrum of elastically plane-strained graphene," Technical Physics Letters, vol. 37, pp. 519-521, 2011.Doi:https://doi.org/10.1134/S1063785011060095
M. Majid and S. Savinskii, "Change in the electronic spectrum of a carbon nanotube during elastic deformation and the relative shear of atomic sublattices," Technical Physics, vol. 57, pp. 726-729, 2012. Doi:https://doi.org/10.1134/S1063784212050192
M. Majid, "I–V characteristics and conductance of strained SWCNTs," Physics Letters A, vol. 383, pp. 879-887, 2019. Doi:https://doi.org/10.1016/j.physleta.2018.12.003
M. Majid, B. Najlaa, and S. Savinskii, "Modification of electronic properties of graphene under three patterns of elastic deformation," Indian Journal of Physics, vol. 92, pp. 159-169, 2018.Doi:https://doi.org/10.1007/s12648-017-1089-9
A. A. Abdulhussain and M. Majid, "The electronic transport properties of SWCNTs under the influence of deformation and a magnetic field," Physica B: Condensed Matter, vol. 615, p. 413063, 2021.Doi:https://doi.org/10.1016/j.physb.2021.413063
J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, et al., "Drude conductivity of Dirac fermions in graphene," Physical Review B, vol. 83, p. 165113, 2011.Doi:https://doi.org/10.1103/PhysRevB.83.165113
S. Latil and L. Henrard, "Charge carriers in few-layer graphene films," Physical review letters, vol. 97, p. 036803, 2006. Doi:https://doi.org/10.1103/PhysRevLett.97.036803
M. Aoki and H. Amawashi, "Dependence of band structures on stacking and field in layered graphene," Solid State Communications, vol. 142, pp. 123-127, 2007.Doi:https://doi.org/10.1016/j.ssc.2007.02.013
I. Lavor, D. Da Costa, A. Chaves, S. Sena, G. Farias, B. Van Duppen, et al., "Effect of zitterbewegung on the propagation of wave packets in ABC-stacked multilayer graphene: an analytical and computational approach," Journal of Physics: Condensed Matter, vol. 33, p. 095503, 2020.Doi:https://doi.org/10.1088/1361-648X/abcd7f
M. G. Menezes, R. B. Capaz, and S. G. Louie, "Ab initio quasiparticle band structure of ABA and ABC-stacked graphene trilayers," Physical Review B, vol. 89, p. 035431, 2014.Doi:https://doi.org/10.1103/PhysRevB.89.035431
B. Xie, R. Peng, S. Zhang, and J. Liu, "Alternating twisted multilayer graphene: generic partition rules, double flat bands, and orbital magnetoelectric effect," npj Computational Materials, vol. 8, p. 110, 2022. Doi:https://doi.org/10.1038/s41524-022-00789-5
V. H. Nguyen, T. X. Hoang, and J.-C. Charlier, "Electronic properties of twisted multilayer graphene," Journal of Physics: Materials, vol. 5, p. 034003, 2022.Doi:https://doi.org/10.1088/2515-7639/ac6c4a
I. Lavor, D. Da Costa, A. Chaves, S. Sena, G. Farias, B. Van Duppen, et al., "Effect of zitterbewegung on the propagation of wave packets in ABC-stacked multilayer graphene: an analytical and computational approach," Journal of Physics: Condensed Matter, vol. 33, p. 095503, 2020. Doi:https://doi.org/10.1088/1361-648X/abcd7f
Majid, M. J., and M. H. Alaa. "Trembling motion of the wave packet in armchair graphene nanoribbons (AGNRs)." International Journal of Modern Physics B 32.32 (2018): 1850364.Doi:https://doi.org/10.1142/S0217979218503642
W. Ren, W. Chen, X. Liu, and X. Zhang, "Strain induced magnetic phase transition in slightly doped graphene nanoribbons," Physics Letters A, vol. 426, p. 127886, 2022.Doi:https://doi.org/10.1016/j.physleta.2021.127886
N. Merino-Díez, A. Garcia-Lekue, E. Carbonell-Sanromà, J. Li, M. Corso, L. Colazzo, et al., "Width-dependent band gap in armchair graphene nanoribbons reveals Fermi level pinning on Au (111)," ACS nano, vol. 11, pp. 11661-11668, 2017.Doi:https://doi.org/10.1021/acsnano.7b06765
F. Ma, Z. Guo, K. Xu, and P. K. Chu, "First-principle study of energy band structure of armchair graphene nanoribbons," Solid state communications, vol. 152, pp. 1089-1093, 2012.Doi:https://doi.org/10.1016/j.ssc.2012.04.058
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 J. Basrah Res. (Sci.)
This work is licensed under a Creative Commons Attribution 4.0 International License.