Big Data Framework Classification for Public E-Governance Using Machine Learning Techniques

Authors

  • Mohammed H. Altamimi Department of Computer Science, College of Computer Science and Information Technology, University of Basrah, Basrah, Iraq.
  • Maalim A. Aljabery Department of Computer Science, College of Computer Science and Information Technology, University of Basrah, Basrah, Iraq.
  • Imad S. Alshawi Department of Computer Science, College of Computer Science and Information Technology, University of Basrah, Basrah, Iraq.

DOI:

https://doi.org/10.56714/bjrs.48.2.11

Keywords:

Big data, Classification, Data mining E-Government, Machine learning, Prediction

Abstract

Using Machine Learning (ML) in many fields has shown remarkable results, especially in government data analysis, classification, and prediction. This technology has been applied to the National ID data (Electronic Civil Registry) (ECR). It is used in analyzing this data and creating an e-government project to join the National ID with three government departments (Military, Social Welfare, and Statistics_ Planning). The proposed system works in two parts: Online and Offline at the same time; based on five (ML) algorithms: Support Vector Machine (SVM), Decision Tree (DT), K-Nearest Neighbor (KNN), Random Forest (RF), and Naive Bayes (NB). The system offline part applies the stages of pre-processing and classification to the ECR and then predicts what government departments need in the online part. The system chooses the best classification algorithm, which shows perfect results for each government department when online communication is made between the department and the national ID. According to the simulation results of the proposed system, the accuracy of the classifications is around 100%, 99%, and 100% for the military department by the SVM classifier, the social welfare department by the RF classifier, and the statistics-planning department by the SVM classifier, respectively.

 

Downloads

Download data is not yet available.

References

A.M. Hirudkar, M.S.S. Sherekar, International Journal of Computer Science and Applications 6(2), 232 (2013).

C. Alexopoulos, V. Diamantopoulou, Z. Lachana, Y. Charalabidis, A. Androutsopoulou, M.A. Loutsaris, ACM Journal, ICEGOV '19: Proceedings of the 12th International Conference on Theory and Practice of Electronic Governance 1481, 354 )2019(.

D. K. Altmemi, I. S. Alshawi, Journal of Positive School Psychology 6(5), 1898 (2022).

M.R. Rajagopalan, S. Vellaipandiyan, International Conference on ICT and Knowledge Engineering, (2013).

M.D. Aljubaily, I.S. Alshawi International Journal of Electrical and Computer Engineering, 12(2), 1776 (2022).

J. Han, M. Kamber, J. Pei, Elsevier Science, (2011).

I.S. Alshawi, Z.A. Abbood, A.A. Alhijaj, Telkomnika (Telecommunication Computer Electron. Control) 20(1), 212 (2022).

N. Indumathi, R. Ramalakshmi, V. Ajith, International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), 811 (2021).

H.H. Al-badrei, I.S. Alshawi, Advances in Mechanics 9(3), 1467 (2021).

I. S. Alshawi, M. H. K. Jabbar, R. Z. Khan, International Journal of Management & Information Technology 6, 794 (2013).

Z.A. Abbood, I.S. Alshawi, A.A. Alhijaj, F.P. Vidal, Telkomnika (Telecommunication Computer Electron. Control) 18(5), 2439 (2020).

E. Agbozo, K. Spassov, Proceedings of the 11th international conference on theory and practice of electronic governance 662 (2018).

K.T. Chui, W. Alhalabi, S.S.H. Pang, P.O. de Pablos, R.W. Liu, M. Zhao, Sustainability 9(12), 2309 (2017).

A. Mir, S.N. Dhage, 2018 fourth international conference on computing communication control and automation (ICCUBEA), 1 (2018).

M.A. Aljabery, S. Kurnaz, Journal of Information Science and Engineering 36(2), 205 (2020).

M.M. Saritas, A. Yasar, International Journal of Intelligent Systems and Applications in Engineering 7(2), 88 (2019).

World Bank, "Toward More People-Centered Service Delivery: Opportunities for the National ID System in Lesotho. Washington", World Bank Group, (2022).

P. Thakar, A. Mehta, Manisha, International Journal of Computer Applications 110(15), 60 (2015).

M.S. Mahmud, J. Z. Huang, S. Salloum, T.Z. Emara, K. Sadatdiynov, Big Data Mining and Analytics 3( 2), 85 (2020).

F. Salo, M. Injadat, A.B. Nassif, A. Shami, A. Essex, IEEE Access 6, 56046 (2018).

N.O. Alsrehin, A.F. Klaib, A. Magableh, IEEE Access 7, 49830 (2019).

S.M. Gorade, A. Deo , P. Purohit, International Research Journal of Engineering and Technology (IRJET) 4(1), 3112(2017).

A.H. Wahbeh, Q.A. Al-Radaideh, M.N. Al-Kabi, E.M. Al-Shawakfa, International Journal of Advanced Computer Science and Applications 8(2), 18 (2011).

I. Garcia-Magarino, G. Gray, R. Lacuesta, J. Lloret, IEEE Access 6, 27958 (2018).

M. S. Basarslan and I. D. Argun, Electric Electronics, Computer Science, Biomedical Engineerings Meeting (EBBT) 1 (2018).

S.A.W. Saddam, J. Basrah Res. (Sci.) 43(2), 44 (2017).

M.Z. Al-Faiz, A.A. Ali, A.H. Miry, International Conference on Energy, Power and Control (EPC-IQ), 159 (2010).

N. A. Noori, A.A. Yassin, Iraqi Journal for Electrical & Electronic Engineering 17(2), 120 (2021).

S. Kurnaz, M.A.H. Aljabery, ICEMIS '18: Proceedings of the Fourth International Conference on Engineering and MIS, 57, 1 (2018).

Downloads

Published

30-12-2022

How to Cite

Altamimi , M. H., Aljabery, M. A., & Alshawi, I. S. (2022). Big Data Framework Classification for Public E-Governance Using Machine Learning Techniques . Basrah Researches Sciences, 48(2), 112–122. https://doi.org/10.56714/bjrs.48.2.11

Issue

Section

Articles