An Improvement of the Order of Approximation by the Sequence of Bernstein-Kantorovich Operators
DOI:
https://doi.org/10.56714/bjrs.50.1.21Keywords:
Bernstein-Kantorovich, Linear positive, Korovkin’s Theorem, Voronovskaja formula, ApproximationAbstract
This paper presented an improvement of the order of approximation by the sequence of Bernstein-Kantorovich type operators in three ways. The approximation order obtained by these sequences is and respectively. Some theoretical results related to the convergence theorem and Voronovskaja asymptotic formula of the improvement sequences are presented. Then, some numerical examples for these sequences are given. The numerical results are supported by the improvement of the order of approximation. These improvements are done based on the research idea
Downloads
References
P.L Butzer, “Linear combinations of Bernstein polynomials,”. Cambridge University, Canad, pp. 559–567, 1953. https://doi.org/10.4153/CJM-1953-063-7.
P. J. Davis, “Interpolation and approximation,”. Courier Corporation, pp.37-39, 1975 https://doi.org/10.1007/978-0-8176-8259-02 .
V. Gupta, R. P. Agarwal, “Convergence estimates in approximation theory,”. Springer, New York, pp. 231-233, 2014. https://doi.org/10.1007/978-3-319-02765-4
P. P. Korovkin, “Linear Operators and Approximation Theory,”. Hindustan Publications of Corporations, India, pp.76-79, 1960. https://doi.org/10.4099/math1924.1.185.
G. G. Lorentz, “Bernstein Polynomials,”. American Mathematical Society, pp. 105-108, 2012. https://doi.org/10.2478/cmam-2003-0038.
J. T. Rivlin, “An Introduction to the Approximation of Functions,”. Courier Corporation, pp. 27-30, 2003. https://doi.org/10.1137/1012069.
E. Voronovskaja, “Determination de la former asymptote de approximation des functions par les polynomes de M. Bernstein,”. C. R. Acad, pp. 79–85, 1932. https://doi.org/10.1016/0021-9045(92)90086-4.
P.L Butzer, “Linear combinations of Bernstein polynomials,”. J. Math. Canad, pp. 559–567, 1959. https://doi.org/10.4153/CJM-1953-063-7.
H. Khosravian-Arab, M. Dehghan, and M.R. Eslahchi, Numer Algor, vol. 77, pp.111-150, 2018. https://doi.org/10.1007/s11075-017-0307-z.
M. K. Shehab, A. K. Hassen, J. Basrah Res, vol. 48, pp. 98-107, 2022. https://doi.org/10.56714/bjrs.48.2.4.
V. Gupta, R.P. Agarwal, “Convergence estimates in approximation theory,”. Springer, New York, pp. 211-212, 2014. DOI:10.1007/978-3-319-02765-4.
P. N. Agrawal, V. Gupta, A. Sathish Kumar. Appl. Math. Comput, vol. 219, pp.7754-7764, 2013. https://doi.org/10.1515/dema-1998-0108.
A. H. Bhrawy, E. H. Saker, M. A. Baleanu, “Modified Jacobi–Bernstein basis transformation and its application to multi-degree reduction of Bezier curves”. J. Comput. Appl. Math, vol. 302, pp.369–384, 2016. DOI:10.1016/j.cad.2010.11.001
H. Gonska, I. Rasa, Mat. Vesnik, vol. 61, pp. 53-60, 2009. http://mi.mathnet.ru/basm355.
A. Kumar, “Approximation Properties of Generalized λ-Bernstein-Kantorovich Yype Operators”, Rendiconti del Circolo Mathematico di Palermo Series, vol. 70, pp. 505-520, 2020. https://doi.org/10.1007/s12215-020-00509-2.
S. N Bernstein, “Bernstein polynomials and learning theory”, J. Approximation.Theory, vol. 128, pp. 187-206, 2004. DOI:10.1016/j.jat.2004.04.010.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 J. Basrah Res. (Sci.)
This work is licensed under a Creative Commons Attribution 4.0 International License.