The Influence of Thermal Treatment on the Sensitivity and Glow-Curve of TLD-200
Keywords:
Thermoluminescent, Thermal treatments, Thermal Fading, Dosimeters, TLD200Abstract
The effect of heat treatments on the response of calcium fluoride-doped dysprosium (TLD200) to radiation was studied in this research. The thermal treatments researched before the radiation was conducted included 100°C/h, 200°C/h, 300°C/h, and 400°C/h. The following similarity values were derived from the study's thermal treatments: 11.5%, 12%, 13%, and 17%, respectively. The results indicate that the 400°C/h heat treatment increased the response, which is one of the best treatments compared to the heat treatments under investigation.
Downloads
References
V. Pagonis, G. Kitis, and C. Furetta, "Numerical and Practical Exercises in Thermoluminescence. Springer", 2006. DOI: 10.1007/3-540-33712-1.
M. S. Alam and S. Bauk, “The effect of the activation energy, frequency factor and the initial concentration of filled traps on the TL glow curves of thermoluminescence,” Adv. Stud. Theor. Phys., vol. 4, pp. 665–678, 2010.
S. D. S. Fernández et al., “Thermoluminescent characteristics of LiF: Mg, Cu, P and CaSO4: Dy for low dose measurement,” Appl. Radiat. Isot., vol. 111, pp. 50–55, 2016. DOI: 10.1016/j.apradiso.2016.02.011.
W. R. Hendee, G. S. Ibbott, and E. G. Hendee, "Radiation Therapy Physics", 4th ed. Wiley, 2013. DOI: 10.1002/9781118590124.
P. Andreo et al., "Fundamentals of Ionizing Radiation Dosimetry". Wiley, 2017. DOI: 10.1002/9783527698045.
C. Furetta, "Questions and Answers on Thermoluminescence (TL) and Optically Stimulated Luminescence (OSL)". World Scientific, 2008. DOI: 10.1142/6814.
A. Ozdemir et al., “Thermoluminescence study of Mn doped lithium tetraborate powder and pellet samples synthesized by solution combustion synthesis,” J. Lumin., vol. 173, pp. 149–158, 2016. DOI: 10.1016/j.jlumin.2016.01.008.
N. J. Hussain, H. A. Badran, and R. Ch. Abul-hial, “Thermoluminescence studies of Himalayan salt materials,” J. Basrah Res. Sci., vol. 50, p. 214, 2024. [DOI not available]
H. K. Obayes et al., “A new strontium/copper co-doped lithium borate glass composition with improved dosimetric features,” J. Lumin., vol. 176, pp. 202–211, 2016. DOI: 10.1016/j.jlumin.2016.03.020.
H. A. Badran, R. C. H. Abul-hail, and M. T. Obeed, “Study on effect of gamma radiation on some linear and nonlinear properties of Pyronine Y,” AIP Conf. Proc., vol. 2290, p. 050035, 2020. DOI: 10.1063/5.0027452.
M. T. Obeed, R. Ch. Abul-Hail, and H. A. Badran, “Gamma irradiation effect on the nonlinear refractive index and optical limiting behavior of Pyronine Y dye solution,” J. Basrah Res. Sci., vol. 46, no. 1, 2020.
N. J. Hussain, R. Ch. Abul-hial, and H. A. Badran, “A comparison of TLD dosimeters between TLD-200 and Himalaya salt for application in environmental dosimetry,” World Sci. News, vol. 196, pp. 206–213, 2024.
V. E. Kafadar, “Thermal quenching of thermoluminescence in TLD-200, TLD-300 and TLD-400 after β-irradiation,” Physica B, vol. 406, no. 3, pp. 537–540, 2011. DOI: 10.1016/j.physb.2010.11.018.
R. M. Abdullah, R. Ch. Abul-Hail, and H. A. Badran, “The effect of gamma-irradiation on absorption spectrum of fluorescein dye,” J. Basrah Res. Sci., vol. 49, no. 1, p. 141, 2023. DOI: 10.56714/bjrs.49.1.12.
V. E. Kafadar, A. N. Yazici, and R. G. Yildirim, “The effects of heating rate on the dose response characteristics of TLD-200, TLD-300 and TLD-400,” Nucl. Instrum. Methods Phys. Res. B, vol. 267, no. 19, pp. 3337–3346, 2009. DOI: 10.1016/j.nimb.2009.07.005.
A. S. Hassan, R. C. Abul-Hail, H. A. Badran, and A. Al-Salihi, “Investigation of TLD-200 in the dose-response range useful for environmental radiation dosimetry,” High Technol. Lett., vol. 28, no. 7, 2022.

Downloads
Published
Issue
Section
License
Copyright (c) 2025 Basrah Researches Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.