First-Principles Study of Half-Metallic Behavior in Vanadium Nitride (VN): Structural, Electronic, and Optical Properties of Rock Salt and Zinc Blende Structures
DOI:
https://doi.org/10.56714/bjrs.51.1.18Keywords:
Half-metallic, DFT, magnetic moment, optical propertiesAbstract
The bulk optical and electrical characteristics of VN are investigated using first-principles simulations. The optimized lattice constants for rock salt and zinc blend are 6.403 Å and 7.22 Å, respectively. Both structures exhibit half-metallic behavior with metallic conductivity for spin-up electrons and semiconducting behavior for spin-down electrons. The zinc blend contains a direct band gap of 6.18 eV, whereas rock salt has a direct band gap of 3.77 eV. The total magnetic moment of both structures is 2 μB per unit formula. In the bulk Heusler lattice, the magnetic moment value shows that the structure behaves half-metallically in both the rock-salt and zinc-blende configurations.
By calculating key optical parameters, including the dielectric function, absorption coefficient, and optical spectra within the 0-15 eV energy range, the material demonstrates significant potential for spintronic devices and optoelectronic applications
Downloads
References
X. P. Wei, W. Sun, Y. L.Zhang, X. W. Sun, T. Song, T. Wang, ... & X. F. Zhu, Investigations on electronic, Fermi surface, Curie temperature, and optical properties of Zr2CoAl. Journal of Solid State Chemistry, 247, 97-104 (2017). https://doi.org/10.1016/j.jssc.2017.01.002. DOI: https://doi.org/10.1016/j.jssc.2017.01.002
Z. Wang, H. Wang, L. Wang, H. Zhao, M. A. Kamboh, L. Hao, ... & Q. Wang, Influence of Cu dopant on the electronic and optical properties of graphene-like ZnO monolayer. Physica E: Low-dimensional Systems and Nanostructures, 115, 113702 (2020). https://doi.org/10.1016/j.physe.2019.113702. DOI: https://doi.org/10.1016/j.physe.2019.113702
J. M. D. Coey, d0 ferromagnetism. Solid state sciences, 7(6), 660-667 (2005). https://doi.org/10.1016/j.solidstatesciences.2004.11.012. DOI: https://doi.org/10.1016/j.solidstatesciences.2004.11.012
J. I. Beltrán, C. Monty, L. Balcells, & Martínez-Boubeta, C. Possible d0 ferromagnetism in MgO. Solid State Communications, 149(39-40), 1654-1657 (2009). https://doi.org/10.1016/j.ssc.2009.06.044. DOI: https://doi.org/10.1016/j.ssc.2009.06.044
W. Adli, & M. Ferhat, d0 Ferromagnetism in oxygen-doped CuCl: First principles study. Solid state communications, 189, 68-71 (2014). https://doi.org/10.1016/j.ssc.2014.03.013. DOI: https://doi.org/10.1016/j.ssc.2014.03.013
J. Du, S. Dong, Y. L. Lu, H. Zhao, L. Feng, & L. Y. Wang, Half-metallic ferromagnetic features in d0 quaternary-Heusler compounds KCaCF and KCaCCl: A first-principles description. Journal of Magnetism and Magnetic Materials, 428, 250-254 (2017). https://doi.org/10.1016/j.jmmm.2016.12.038. DOI: https://doi.org/10.1016/j.jmmm.2016.12.038
M. Kazemi, P. Amiri, & H. Salehi, Density functional study of d0 half-metallic ferromagnetism in a bulk and (001) nano-surface of KP compound. Physics Letters A, 381(30), 2420-2425 (2017). https://doi.org/10.1016/j.physleta.2017.05.027. DOI: https://doi.org/10.1016/j.physleta.2017.05.027
Gao, G. Y., Yao, K. L., Liu, Z. L., Zhang, J., Min, Y., & Fan, S. W. A first-principles study of half-metallic ferromagnetism in binary alkaline-earth nitrides with rock-salt structure. Physics letters A, 372(9), 1512-1515 (2008). https://doi.org/10.1016/j.physleta.2007.09.064. DOI: https://doi.org/10.1016/j.physleta.2007.09.064
De Groot, R. A., Mueller, F. M., van Engen, P. V., & Buschow, K. H. J. New class of materials: half-metallic ferromagnets. Physical review letters, 50(25), 2024 (1983). https://doi.org/10.1103/PhysRevLett.50.2024?_gl=1*1i4rqom*_ga*ODk1Mjk4OTYzLjE3NDE5NDg1NzQ.*_ga_ZS5V2B2DR1*MTc0MTk0ODU3NC4xLjAuMTc0MTk0ODU3NC4wLjAuMzk2MjA0NTk1.
S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, V. S. von Molnár, M. L. Roukes, ... & D. M. Treger, Spintronics: a spin-based electronics vision for the future. science, 294(5546), 1488-1495 (2001). https://doi.org/10.1126/science.1065389. DOI: https://doi.org/10.1126/science.1065389
H. Ohno, Making nonmagnetic semiconductors ferromagnetic. science, 281(5379), 951-956 (1998). https://doi.org/10.1126/science.281.5379.951. DOI: https://doi.org/10.1126/science.281.5379.951
K. Kusakabe, M. Geshi, H. Tsukamoto, N. Suzuki, J. Phys.: Condens. Matter 16 S5639 (2004). https://doi.org/10.1088/0953-8984/16/48/021. DOI: https://doi.org/10.1088/0953-8984/16/48/021
M. Sieberer, J. Redinger, S. Khmelevskyi, P. Mohn, Phys. Rev. B 73, 024404 (2006). https://doi.org/10.1103/PhysRevB.73.024404?_gl=1*1863e9l*_ga*ODk1Mjk4OTYzLjE3NDE5NDg1NzQ.*_ga_ZS5V2B2DR1*MTc0MjAzNTY1OS4yLjAuMTc0MjAzNTY1OS4wLjAuOTY0MzMyNDIx.
G.Y. Gao, K.L. Yao, E. Sasioglu, L.M. Sandratskii, Z.L. Liu, J.L. Jiang, Phys. Rev. B 75, 174442 (2007). https://doi.org/10.1103/PhysRevB.75.174442?_gl=1*1387g63*_ga*ODk1Mjk4OTYzLjE3NDE5NDg1NzQ.*_ga_ZS5V2B2DR1*MTc0MjAzNTY1OS4yLjEuMTc0MjAzNTc3NS4wLjAuOTY0MzMyNDIx.
G.Y. Gao, K.L. Yao, Appl. Phys. Lett. 91, 082512 (2007). https://doi.org/10.1063/1.2775081. DOI: https://doi.org/10.1063/1.2775081
S. J Dong, H. Zhao, Appl. Phys. Lett. 98, 182501 (2011). https://doi.org/10.1063/1.3586257. DOI: https://doi.org/10.1063/1.3586257
Ammar A. Kadhim, H. Sedghi, Jabbar M. Khalaf Al-zyadi, Investigation of structural, electronic, and optical properties of bulk and monolayer for new material CrS under electric field effect, Journal of Magnetism and Magnetic Materials, 603, 172276 (2024). https://doi.org/10.1016/j.jmmm.2024.172276. DOI: https://doi.org/10.1016/j.jmmm.2024.172276
C.W. Zhang, J. Phys. D: Appl. Phys. 41, 085006 (2008). https://doi.org/10.1088/0022-3727/41/8/085006. DOI: https://doi.org/10.1088/0022-3727/41/8/085006
G.Y. Gao, K.L. Yao, M.H. Song, J. Magn. Magn. Mater. 323, 2652 (2011). https://doi.org/10.1016/j.jmmm.2011.06.003. DOI: https://doi.org/10.1016/j.jmmm.2011.06.003
S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I. Probert, K. Refson, M.C. Payne, First principles methods using CASTEP, Z. Krist. 220, 567(2005). https://doi.org/10.1524/zkri.220.5.567.65075. DOI: https://doi.org/10.1524/zkri.220.5.567.65075
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865?_gl=1*lyv2cq*_ga*ODk1Mjk4OTYzLjE3NDE5NDg1NzQ.*_ga_ZS5V2B2DR1*MTc0MjAzNTY1OS4yLjEuMTc0MjAzNjY4OC4wLjAuOTY0MzMyNDIx.
J.C. Slater, Phys. Rev. 49, 931 (1936). https://doi.org/10.1103/PhysRev.49.931?_gl=1*vwvm0p*_ga*ODk1Mjk4OTYzLjE3NDE5NDg1NzQ.*_ga_ZS5V2B2DR1*MTc0MjAzNTY1OS4yLjEuMTc0MjAzNjc2MC4wLjAuOTY0MzMyNDIx.
L. Pauling, Phys. Rev. 54, 899 (1938). https://doi.org/10.1103/PhysRev.54.899?_gl=1*1y7hh7n*_ga*ODk1Mjk4OTYzLjE3NDE5NDg1NzQ.*_ga_ZS5V2B2DR1*MTc0MjAzNTY1OS4yLjEuMTc0MjAzNjgxNy4wLjAuOTY0MzMyNDIx.
M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, F. Bechstedt, Phys. Rev. B 73, 045112 (2006). https://doi.org/10.1103/PhysRevB.73.045112?_gl=1*ag2ugk*_ga*ODk1Mjk4OTYzLjE3NDE5NDg1NzQ.*_ga_ZS5V2B2DR1*MTc0MjAzNTY1OS4yLjEuMTc0MjAzNjg2NS4wLjAuOTY0MzMyNDIx.
G.Y. Guo, K.C. Chu, D.S. Wang, C.G. Duan, Phys. Rev. B 69, 205416 (2004). https://doi.org/10.1103/PhysRevB.69.205416?_gl=1*lbisck*_ga*ODk1Mjk4OTYzLjE3NDE5NDg1NzQ.*_ga_ZS5V2B2DR1*MTc0MjAzNTY1OS4yLjEuMTc0MjAzNjkwMy4wLjAuOTY0MzMyNDIx.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Basrah Researches Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Under this license, users are permitted to read, download, copy, distribute, print, search, link to the full texts of articles, and create derivative works, including for commercial purposes, provided that appropriate credit is given to the original author(s) and the source.
Authors retain the copyright of their published work, while granting the Journal of Basrah Researches Sciences (JBRS) the right of first publication. Proper attribution must include the article title, author name(s), journal name, DOI, and a link to the Creative Commons license.





