First-Principles Study of Half-Metallic Behavior in Vanadium Nitride (VN): Structural, Electronic, and Optical Properties of Rock Salt and Zinc Blende Structures
Keywords:
Half-metallic, DFT, magnetic moment, optical propertiesAbstract
The bulk optical and electrical characteristics of VN are investigated using first-principles simulations. The optimized lattice constants for rock salt and zinc blend are 6.403 Å and 7.22 Å, respectively. Both structures exhibit half-metallic behavior with metallic conductivity for spin-up electrons and semiconducting behavior for spin-down electrons. The zinc blend contains a direct band gap of 6.18 eV, whereas rock salt has a direct band gap of 3.77 eV. The total magnetic moment of both structures is 2 μB per unit formula. In the bulk Heusler lattice, the magnetic moment value shows that the structure behaves half-metallically in both the rock-salt and zinc-blende configurations.
By calculating key optical parameters, including the dielectric function, absorption coefficient, and optical spectra within the 0-15 eV energy range, the material demonstrates significant potential for spintronic devices and optoelectronic applications
Downloads
References
X. P. Wei, W. Sun, Y. L.Zhang, X. W. Sun, T. Song, T. Wang, ... & X. F. Zhu, Investigations on electronic, Fermi surface, Curie temperature, and optical properties of Zr2CoAl. Journal of Solid State Chemistry, 247, 97-104 (2017). https://doi.org/10.1016/j.jssc.2017.01.002.
Z. Wang, H. Wang, L. Wang, H. Zhao, M. A. Kamboh, L. Hao, ... & Q. Wang, Influence of Cu dopant on the electronic and optical properties of graphene-like ZnO monolayer. Physica E: Low-dimensional Systems and Nanostructures, 115, 113702 (2020). https://doi.org/10.1016/j.physe.2019.113702.
J. M. D. Coey, d0 ferromagnetism. Solid state sciences, 7(6), 660-667 (2005). https://doi.org/10.1016/j.solidstatesciences.2004.11.012.
J. I. Beltrán, C. Monty, L. Balcells, & Martínez-Boubeta, C. Possible d0 ferromagnetism in MgO. Solid State Communications, 149(39-40), 1654-1657 (2009). https://doi.org/10.1016/j.ssc.2009.06.044.
W. Adli, & M. Ferhat, d0 Ferromagnetism in oxygen-doped CuCl: First principles study. Solid state communications, 189, 68-71 (2014). https://doi.org/10.1016/j.ssc.2014.03.013.
J. Du, S. Dong, Y. L. Lu, H. Zhao, L. Feng, & L. Y. Wang, Half-metallic ferromagnetic features in d0 quaternary-Heusler compounds KCaCF and KCaCCl: A first-principles description. Journal of Magnetism and Magnetic Materials, 428, 250-254 (2017). https://doi.org/10.1016/j.jmmm.2016.12.038.
M. Kazemi, P. Amiri, & H. Salehi, Density functional study of d0 half-metallic ferromagnetism in a bulk and (001) nano-surface of KP compound. Physics Letters A, 381(30), 2420-2425 (2017). https://doi.org/10.1016/j.physleta.2017.05.027.
Gao, G. Y., Yao, K. L., Liu, Z. L., Zhang, J., Min, Y., & Fan, S. W. A first-principles study of half-metallic ferromagnetism in binary alkaline-earth nitrides with rock-salt structure. Physics letters A, 372(9), 1512-1515 (2008). https://doi.org/10.1016/j.physleta.2007.09.064.
De Groot, R. A., Mueller, F. M., van Engen, P. V., & Buschow, K. H. J. New class of materials: half-metallic ferromagnets. Physical review letters, 50(25), 2024 (1983). https://doi.org/10.1103/PhysRevLett.50.2024?_gl=1*1i4rqom*_ga*ODk1Mjk4OTYzLjE3NDE5NDg1NzQ.*_ga_ZS5V2B2DR1*MTc0MTk0ODU3NC4xLjAuMTc0MTk0ODU3NC4wLjAuMzk2MjA0NTk1.
S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, V. S. von Molnár, M. L. Roukes, ... & D. M. Treger, Spintronics: a spin-based electronics vision for the future. science, 294(5546), 1488-1495 (2001). https://doi.org/10.1126/science.1065389.
H. Ohno, Making nonmagnetic semiconductors ferromagnetic. science, 281(5379), 951-956 (1998). https://doi.org/10.1126/science.281.5379.951.
K. Kusakabe, M. Geshi, H. Tsukamoto, N. Suzuki, J. Phys.: Condens. Matter 16 S5639 (2004). https://doi.org/10.1088/0953-8984/16/48/021.
M. Sieberer, J. Redinger, S. Khmelevskyi, P. Mohn, Phys. Rev. B 73, 024404 (2006). https://doi.org/10.1103/PhysRevB.73.024404?_gl=1*1863e9l*_ga*ODk1Mjk4OTYzLjE3NDE5NDg1NzQ.*_ga_ZS5V2B2DR1*MTc0MjAzNTY1OS4yLjAuMTc0MjAzNTY1OS4wLjAuOTY0MzMyNDIx.
G.Y. Gao, K.L. Yao, E. Sasioglu, L.M. Sandratskii, Z.L. Liu, J.L. Jiang, Phys. Rev. B 75, 174442 (2007). https://doi.org/10.1103/PhysRevB.75.174442?_gl=1*1387g63*_ga*ODk1Mjk4OTYzLjE3NDE5NDg1NzQ.*_ga_ZS5V2B2DR1*MTc0MjAzNTY1OS4yLjEuMTc0MjAzNTc3NS4wLjAuOTY0MzMyNDIx.
G.Y. Gao, K.L. Yao, Appl. Phys. Lett. 91, 082512 (2007). https://doi.org/10.1063/1.2775081.
S. J Dong, H. Zhao, Appl. Phys. Lett. 98, 182501 (2011). https://doi.org/10.1063/1.3586257.
Ammar A. Kadhim, H. Sedghi, Jabbar M. Khalaf Al-zyadi, Investigation of structural, electronic, and optical properties of bulk and monolayer for new material CrS under electric field effect, Journal of Magnetism and Magnetic Materials, 603, 172276 (2024). https://doi.org/10.1016/j.jmmm.2024.172276.
C.W. Zhang, J. Phys. D: Appl. Phys. 41, 085006 (2008). https://doi.org/10.1088/0022-3727/41/8/085006.
G.Y. Gao, K.L. Yao, M.H. Song, J. Magn. Magn. Mater. 323, 2652 (2011). https://doi.org/10.1016/j.jmmm.2011.06.003.
S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I. Probert, K. Refson, M.C. Payne, First principles methods using CASTEP, Z. Krist. 220, 567(2005). https://doi.org/10.1524/zkri.220.5.567.65075.
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865?_gl=1*lyv2cq*_ga*ODk1Mjk4OTYzLjE3NDE5NDg1NzQ.*_ga_ZS5V2B2DR1*MTc0MjAzNTY1OS4yLjEuMTc0MjAzNjY4OC4wLjAuOTY0MzMyNDIx.
J.C. Slater, Phys. Rev. 49, 931 (1936). https://doi.org/10.1103/PhysRev.49.931?_gl=1*vwvm0p*_ga*ODk1Mjk4OTYzLjE3NDE5NDg1NzQ.*_ga_ZS5V2B2DR1*MTc0MjAzNTY1OS4yLjEuMTc0MjAzNjc2MC4wLjAuOTY0MzMyNDIx.
L. Pauling, Phys. Rev. 54, 899 (1938). https://doi.org/10.1103/PhysRev.54.899?_gl=1*1y7hh7n*_ga*ODk1Mjk4OTYzLjE3NDE5NDg1NzQ.*_ga_ZS5V2B2DR1*MTc0MjAzNTY1OS4yLjEuMTc0MjAzNjgxNy4wLjAuOTY0MzMyNDIx.
M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, F. Bechstedt, Phys. Rev. B 73, 045112 (2006). https://doi.org/10.1103/PhysRevB.73.045112?_gl=1*ag2ugk*_ga*ODk1Mjk4OTYzLjE3NDE5NDg1NzQ.*_ga_ZS5V2B2DR1*MTc0MjAzNTY1OS4yLjEuMTc0MjAzNjg2NS4wLjAuOTY0MzMyNDIx.
G.Y. Guo, K.C. Chu, D.S. Wang, C.G. Duan, Phys. Rev. B 69, 205416 (2004). https://doi.org/10.1103/PhysRevB.69.205416?_gl=1*lbisck*_ga*ODk1Mjk4OTYzLjE3NDE5NDg1NzQ.*_ga_ZS5V2B2DR1*MTc0MjAzNTY1OS4yLjEuMTc0MjAzNjkwMy4wLjAuOTY0MzMyNDIx.

Downloads
Published
Issue
Section
License
Copyright (c) 2025 Basrah Researches Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.