First-Principles Study of Half-Metallic Behavior in Vanadium Nitride (VN): Structural, Electronic, and Optical Properties of Rock Salt and Zinc Blende Structures

Authors

Keywords:

Half-metallic, DFT, magnetic moment, optical properties

Abstract

The bulk optical and electrical characteristics of VN are investigated using first-principles simulations. The optimized lattice constants for rock salt and zinc blend are 6.403 Å and 7.22 Å, respectively. Both structures exhibit half-metallic behavior with metallic conductivity for spin-up electrons and semiconducting behavior for spin-down electrons. The zinc blend contains a direct band gap of 6.18 eV, whereas rock salt has a direct band gap of 3.77 eV. The total magnetic moment of both structures is 2 μB per unit formula. In the bulk Heusler lattice, the magnetic moment value shows that the structure behaves half-metallically in both the rock-salt and zinc-blende configurations.

By calculating key optical parameters, including the dielectric function, absorption coefficient, and optical spectra within the 0-15 eV energy range, the material demonstrates significant potential for spintronic devices and optoelectronic applications

Downloads

Download data is not yet available.

References

X. P. Wei, W. Sun, Y. L.Zhang, X. W. Sun, T. Song, T. Wang, ... & X. F. Zhu, Investigations on electronic, Fermi surface, Curie temperature, and optical properties of Zr2CoAl. Journal of Solid State Chemistry, 247, 97-104 (2017). https://doi.org/10.1016/j.jssc.2017.01.002.

Z. Wang, H. Wang, L. Wang, H. Zhao, M. A. Kamboh, L. Hao, ... & Q. Wang, Influence of Cu dopant on the electronic and optical properties of graphene-like ZnO monolayer. Physica E: Low-dimensional Systems and Nanostructures, 115, 113702 (2020). https://doi.org/10.1016/j.physe.2019.113702.

J. M. D. Coey, d0 ferromagnetism. Solid state sciences, 7(6), 660-667 (2005). https://doi.org/10.1016/j.solidstatesciences.2004.11.012.

J. I. Beltrán, C. Monty, L. Balcells, & Martínez-Boubeta, C. Possible d0 ferromagnetism in MgO. Solid State Communications, 149(39-40), 1654-1657 (2009). https://doi.org/10.1016/j.ssc.2009.06.044.

W. Adli, & M. Ferhat, d0 Ferromagnetism in oxygen-doped CuCl: First principles study. Solid state communications, 189, 68-71 (2014). https://doi.org/10.1016/j.ssc.2014.03.013.

J. Du, S. Dong, Y. L. Lu, H. Zhao, L. Feng, & L. Y. Wang, Half-metallic ferromagnetic features in d0 quaternary-Heusler compounds KCaCF and KCaCCl: A first-principles description. Journal of Magnetism and Magnetic Materials, 428, 250-254 (2017). https://doi.org/10.1016/j.jmmm.2016.12.038.

M. Kazemi, P. Amiri, & H. Salehi, Density functional study of d0 half-metallic ferromagnetism in a bulk and (001) nano-surface of KP compound. Physics Letters A, 381(30), 2420-2425 (2017). https://doi.org/10.1016/j.physleta.2017.05.027.

Gao, G. Y., Yao, K. L., Liu, Z. L., Zhang, J., Min, Y., & Fan, S. W. A first-principles study of half-metallic ferromagnetism in binary alkaline-earth nitrides with rock-salt structure. Physics letters A, 372(9), 1512-1515 (2008). https://doi.org/10.1016/j.physleta.2007.09.064.

De Groot, R. A., Mueller, F. M., van Engen, P. V., & Buschow, K. H. J. New class of materials: half-metallic ferromagnets. Physical review letters, 50(25), 2024 (1983). https://doi.org/10.1103/PhysRevLett.50.2024?_gl=1*1i4rqom*_ga*ODk1Mjk4OTYzLjE3NDE5NDg1NzQ.*_ga_ZS5V2B2DR1*MTc0MTk0ODU3NC4xLjAuMTc0MTk0ODU3NC4wLjAuMzk2MjA0NTk1.

S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, V. S. von Molnár, M. L. Roukes, ... & D. M. Treger, Spintronics: a spin-based electronics vision for the future. science, 294(5546), 1488-1495 (2001). https://doi.org/10.1126/science.1065389.

H. Ohno, Making nonmagnetic semiconductors ferromagnetic. science, 281(5379), 951-956 (1998). https://doi.org/10.1126/science.281.5379.951.

K. Kusakabe, M. Geshi, H. Tsukamoto, N. Suzuki, J. Phys.: Condens. Matter 16 S5639 (2004). https://doi.org/10.1088/0953-8984/16/48/021.

M. Sieberer, J. Redinger, S. Khmelevskyi, P. Mohn, Phys. Rev. B 73, 024404 (2006). https://doi.org/10.1103/PhysRevB.73.024404?_gl=1*1863e9l*_ga*ODk1Mjk4OTYzLjE3NDE5NDg1NzQ.*_ga_ZS5V2B2DR1*MTc0MjAzNTY1OS4yLjAuMTc0MjAzNTY1OS4wLjAuOTY0MzMyNDIx.

G.Y. Gao, K.L. Yao, E. Sasioglu, L.M. Sandratskii, Z.L. Liu, J.L. Jiang, Phys. Rev. B 75, 174442 (2007). https://doi.org/10.1103/PhysRevB.75.174442?_gl=1*1387g63*_ga*ODk1Mjk4OTYzLjE3NDE5NDg1NzQ.*_ga_ZS5V2B2DR1*MTc0MjAzNTY1OS4yLjEuMTc0MjAzNTc3NS4wLjAuOTY0MzMyNDIx.

G.Y. Gao, K.L. Yao, Appl. Phys. Lett. 91, 082512 (2007). https://doi.org/10.1063/1.2775081.

S. J Dong, H. Zhao, Appl. Phys. Lett. 98, 182501 (2011). https://doi.org/10.1063/1.3586257.

Ammar A. Kadhim, H. Sedghi, Jabbar M. Khalaf Al-zyadi, Investigation of structural, electronic, and optical properties of bulk and monolayer for new material CrS under electric field effect, Journal of Magnetism and Magnetic Materials, 603, 172276 (2024). https://doi.org/10.1016/j.jmmm.2024.172276.

C.W. Zhang, J. Phys. D: Appl. Phys. 41, 085006 (2008). https://doi.org/10.1088/0022-3727/41/8/085006.

G.Y. Gao, K.L. Yao, M.H. Song, J. Magn. Magn. Mater. 323, 2652 (2011). https://doi.org/10.1016/j.jmmm.2011.06.003.

S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I. Probert, K. Refson, M.C. Payne, First principles methods using CASTEP, Z. Krist. 220, 567(2005). https://doi.org/10.1524/zkri.220.5.567.65075.

J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865?_gl=1*lyv2cq*_ga*ODk1Mjk4OTYzLjE3NDE5NDg1NzQ.*_ga_ZS5V2B2DR1*MTc0MjAzNTY1OS4yLjEuMTc0MjAzNjY4OC4wLjAuOTY0MzMyNDIx.

J.C. Slater, Phys. Rev. 49, 931 (1936). https://doi.org/10.1103/PhysRev.49.931?_gl=1*vwvm0p*_ga*ODk1Mjk4OTYzLjE3NDE5NDg1NzQ.*_ga_ZS5V2B2DR1*MTc0MjAzNTY1OS4yLjEuMTc0MjAzNjc2MC4wLjAuOTY0MzMyNDIx.

L. Pauling, Phys. Rev. 54, 899 (1938). https://doi.org/10.1103/PhysRev.54.899?_gl=1*1y7hh7n*_ga*ODk1Mjk4OTYzLjE3NDE5NDg1NzQ.*_ga_ZS5V2B2DR1*MTc0MjAzNTY1OS4yLjEuMTc0MjAzNjgxNy4wLjAuOTY0MzMyNDIx.

M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, F. Bechstedt, Phys. Rev. B 73, 045112 (2006). https://doi.org/10.1103/PhysRevB.73.045112?_gl=1*ag2ugk*_ga*ODk1Mjk4OTYzLjE3NDE5NDg1NzQ.*_ga_ZS5V2B2DR1*MTc0MjAzNTY1OS4yLjEuMTc0MjAzNjg2NS4wLjAuOTY0MzMyNDIx.

G.Y. Guo, K.C. Chu, D.S. Wang, C.G. Duan, Phys. Rev. B 69, 205416 (2004). https://doi.org/10.1103/PhysRevB.69.205416?_gl=1*lbisck*_ga*ODk1Mjk4OTYzLjE3NDE5NDg1NzQ.*_ga_ZS5V2B2DR1*MTc0MjAzNTY1OS4yLjEuMTc0MjAzNjkwMy4wLjAuOTY0MzMyNDIx.

Downloads

Published

30-06-2025

Issue

Section

Articles

How to Cite

First-Principles Study of Half-Metallic Behavior in Vanadium Nitride (VN): Structural, Electronic, and Optical Properties of Rock Salt and Zinc Blende Structures. (2025). Basrah Researches Sciences, 51(1), 9. https://jou.jobrs.edu.iq/index.php/home/article/view/285