Mechanism of formation outer membrane vesicles of bacteria:A review
DOI:
https://doi.org/10.56714/bjrs.51.2.8Keywords:
Outer membrane, Vesicles, BiogenesisAbstract
Pathogenic and non-pathogenic bacteria secrete outer membrane vesicles (OMV) throughout normal growth. The formation of outer membrane vesicles is an important biological process. The vesicle membranes of bacteria are created when a little part of the membrane stands out from the envelope of the cell, then it is released. This review aimed to focus on OMV formation and its application as vaccines. This study focused on research related to the development of outer membrane vesicles and their use as vaccines. It depended on 13 studies and reviews (2010-2025).The studied databases comprised in PubMed, Scopus, and Web of Science.
Most studies showed that OMVs play vital roles in pathogenesis, stress response, and immunomodulation. Many factors for instance, temperature and exposure to toxic elements, need an adaptation for the cell of bacteria to survive in different circumstances. Inconclusion, according to the examined evidence, OMVs are multiple function nanostructures that serve purposes beside bacterial survival, encompassing immunological regulation, horizontal transfer of genes, and medicinal delivery. Future studies must emphasize standardized techniques for OMV separation, comprehensive compositional analysis, and clinical studies assessing the safety and immunogenicity in people
Downloads
References
[1] P. K. Kopparapu, M. Deshmukh, Z. Hu, M. Mohammad, M. Maugeri, F. Götz, H. Valadi, and T. Jin, “Lipoproteins are responsible for the pro-inflammatory property of Staphylococcus aureus extracellular vesicles,” Int. J. Mol. Sci., vol. 22, no. 13, Art. no. 7099, 2021, doi: 10.3390/ijms22137099.
[2] A. Kulp and M. J. Kuehn, “Biological functions and biogenesis of secreted bacterial outer membrane vesicles,” Annu. Rev. Microbiol., vol. 64, pp. 163–184, 2010, doi: 10.1146/annurev.micro.091208.073413.
[3] P. Briaud and R. K. Carroll, “Extracellular vesicle biogenesis and functions in Gram-positive bacteria,” Infect. Immun., vol. 88, no. 12, 2020, doi: 10.1128/IAI.00433-20.
[4] N. R. Tartaglia et al., “Staphylococcus aureus extracellular vesicles elicit an immunostimulatory response in vivo on the murine mammary gland,” Front. Cell. Infect. Microbiol., vol. 8, Art. no. 277, 2018, doi: 10.3389/fcimb.2018.00277.
[5] M. G. Sartorio, E. J. Pardue, M. F. Feldman, and M. F. Haurat, “Bacterial outer membrane vesicles: From discovery to applications,” Annu. Rev. Microbiol., vol. 75, pp. 609–630, 2021, doi: 10.1146/annurev-micro-052821-031444.
[6] A. J. McBroom and M. J. Kuehn, “Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response,” Mol. Microbiol., vol. 63, no. 2, pp. 545–558, 2007, doi: 10.1111/j.1365-2958.2006.05522.x.
[7] W. Elhenawy, M. O. Debelyy, and M. F. Feldman, “Preferential packing of acidic glycosidases and proteases into Bacteroides outer membrane vesicles,” mBio, vol. 5, no. 2, 2014, doi: 10.1128/mBio.00909-14.
[8] R. Nieuwland and A. Sturk, “Why do cells release vesicles?,” Thromb. Res., vol. 125, pp. S49–S51, 2010, doi: 10.1016/j.thromres.2010.01.037.
[9] J. M. Bomberger, S. Ye, D. P. Maceachran, K. Koeppen, R. L. Barnaby, G. A. O’Toole, and B. A. Stanton, “A Pseudomonas aeruginosa toxin that hijacks the host ubiquitin proteolytic system,” PLoS Pathog., vol. 7, no. 3, Art. no. e1001325, 2011, doi: 10.1371/journal.ppat.1001325.
[10] J. D. Cecil, N. Sirisaengtaksin, N. M. O’Brien-Simpson, and A. M. Krachler, “Outer membrane vesicle–host cell interactions,” Microbiol. Spectr., vol. 7, no. 1, 2019, doi: 10.1128/microbiolspec.PSIB-0001-2018.
[11] F. Micoli and C. A. MacLennan, “Outer membrane vesicle vaccines,” Semin. Immunol., vol. 50, 2020, doi: 10.1016/j.smim.2020.101433.
[12] Y. Liu, K. A. Y. Defourny, E. J. Smid, and T. Abee, “Gram-positive bacterial extracellular vesicles and their impact on health and disease,” Front. Microbiol., vol. 9, Art. no. 1502, 2018, doi: 10.3389/fmicb.2018.01502.
[13] K. Tan, R. Li, X. Huang, and Q. Liu, “Outer membrane vesicles: Current status and future direction of these novel vaccine adjuvants,” Front. Microbiol., vol. 9, Art. no. 783, 2018, doi: 10.3389/fmicb.2018.00783.
[14] D. Mug-Opstelten and B. Witholt, “Preferential release of new outer membrane fragments by exponentially growing Escherichia coli,” Biochim. Biophys. Acta, vol. 508, no. 2, pp. 287–295, 1978, doi: 10.1016/0005-2736(78)90331-0.
[15] L. Xiu, Y. Wu, G. Lin, Y. Zhang, and L. Huang, “Bacterial membrane vesicles: Orchestrators of interkingdom interactions in microbial communities for environmental adaptation and pathogenic dynamics,” Front. Immunol., vol. 15, 2024, doi: 10.3389/fimmu.2024.1371317.
[16] F. S. Abolhasani, N. Vaghefinanekaran, A. Yarahmadi, S. Akrami, S. Mirmahdavi, M. H. Yousefi, H. Afkhami, and M. Shafiei, “Outer membrane vesicles in Gram-negative bacteria and its correlation with pathogenesis,” Front. Immunol., vol. 16, 2025, doi: 10.3389/fimmu.2025.1541636.
[17] M. G. Sartorio, E. J. Pardue, N. E. Scott, and M. F. Feldman, “Human gut bacteria tailor extracellular vesicle cargo for the breakdown of diet- and host-derived glycans,” Proc. Natl. Acad. Sci. U.S.A., vol. 120, no. 27, Art. no. e2306314120, 2023, doi: 10.1073/pnas.2306314120.
[18] M. Bielaszewska et al., “Enterohemorrhagic Escherichia coli hemolysin employs outer membrane vesicles to target mitochondria and cause endothelial and epithelial apoptosis,” PLoS Pathog., vol. 9, no. 12, Art. no. e1003797, 2013, doi: 10.1371/journal.ppat.1003797.
[19] X. Zhao, Y. Wei, Y. Bu, X. Ren, and Z. Dong, “Review on bacterial outer membrane vesicles: Structure, vesicle formation, separation and biotechnological applications,” Microb. Cell Fact., vol. 24, Art. no. 27, 2025, doi: 10.1186/s12934-025-02653-9.
[20] T. N. Ellis and M. J. Kuehn, “Virulence and immunomodulatory roles of bacterial outer membrane vesicles,” Microbiol. Mol. Biol. Rev., vol. 74, no. 1, pp. 81–94, 2010, doi: 10.1128/MMBR.00031-09.
[21] L. A. Lieberman, “Outer membrane vesicles: A bacterial-derived vaccination system,” Front. Microbiol., vol. 13, 2022, doi: 10.3389/fmicb.2022.1029146.
[22] M. D. Balhuizen, E. J. A. Veldhuizen, and H. P. Haagsman, “Outer membrane vesicle induction and isolation for vaccine development,” Front. Microbiol., vol. 12, 2021, doi: 10.3389/fmicb.2021.629090.
[23] Y. M. D. Gnopo, H. C. Watkins, T. C. Stevenson, M. P. DeLisa, and D. Putnam, “Designer outer membrane vesicles as immunomodulatory systems: Reprogramming bacteria for vaccine delivery,” Adv. Drug Deliv. Rev., vol. 114, pp. 132–142, 2017, doi: 10.1016/j.addr.2017.05.003.
[24] F. Mancini, O. Rossi, F. Necchi, and F. Micoli, “OMV vaccines and the role of TLR agonists in immune response,” Int. J. Mol. Sci., vol. 21, no. 12, Art. no. 4416, 2020, doi: 10.3390/ijms21124416.
[25] H. Petousis-Harris, “Impact of meningococcal group B OMV vaccines, beyond their brief,” Hum. Vaccines Immunother., vol. 14, no. 5, pp. 1058–1063, 2018, doi: 10.1080/21645515.2017.1381810.
[26] E. A. Semchenko, A. Tan, R. Borrow, and K. L. Seib, “The serogroup B meningococcal vaccine Bexsero elicits antibodies to Neisseria gonorrhoeae,” Clin. Infect. Dis., vol. 69, no. 6, pp. 1101–1111, 2019, doi: 10.1093/cid/ciy1061.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Basrah Researches Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.





