Investigating levels scheme of 226-236U isotopes using interacting boson model

Authors

  • Ali A. Mezban Department of Physics, College of Education for Pure Sciences, University of Basrah, Basrah, Iraq.
  • Falih Al-khudair ,

Keywords:

Energy Levels, Nuclear structure, Interacting boson model, Heavy nuclei, Uranium isotopes

Abstract

The nuclear structure of 226-23U isotopes has been investigated using the interacting boson model (IBM-1). The model space is extended to include the f-boson (L=3) to calculate the negative parity energy levels . The ground state band (g.s.-band), beta band (β-band), gamma band (γ-band), and two negative bands have been described.  The predicted wave functions have been used to calculate the transition probabilities in-band and inter-band. The nuclear shape was determined by calculating the potential energy surface (PES) as a function of deformation parameters.   The model results are compared with available experimental data, and the results show good overall agreement.

Downloads

Download data is not yet available.

References

A. Bohr and B. R. Mottelson, Nuclear Structure (Singapore: Word Scientific) Vol. II 748 (1998) https://doi.org/10.1142/3530

G. A. Leander, W. Nazarewicz, G. F. Bertsch, J. Dudek , Low-energy collective E1 mode in nuclei, Nucl. Phys. A 453 (1986) 58-76. https://doi.org/10.1016/0375-9474(86)90029-1

W. Nazarewicz, P. Olanders, I. Ragnarsson, J. Dudek, G. A. Leander, P. Moller, E. Ruchowsa, Analysis of octupole instability in medium-mass and heavy nuclei, Nucl. Phys. A 429 (1984) 269-295. https://doi.org/10.1016/0375-9474(84)90208-2

W. Nazarewicz, Low energy octupole and dipole modes in nuclei, Nucl. Phys. A 520 (1990 c333-c351. https://doi.org/10.1016/0375-9474(90)91158-N

J. F. C. Cocks, D. Hawcroft, N. Amzal, P. A. Butler, K. J. Cann, P. T. Greenlees, G. D. Jones, S. Asztalos, R. M. Clark, M. A. Deleplanque, R. M. Diamond, P. Fallon, I. Y. Lee, A .O. Macchiavelli, R.W. Macleod, F. S. Stephens, P. Jones, R. Julin, R. Broda, B. Fornal, C. T. Zhang, Spectroscopy of Rn, Ra and Th isotopes using multi-nucleon transfer reactions, Nucl. Phys. A 645 (1999) 61-91. https://doi.org/10.1016/S0375-9474(98)00586-7

B. M. Loc, N. Le Anh, P. Papakonstantinou, N. Auerbach, Origin of octupole deformation softness in atomic nuclei, Phys. Rev. C 108 (2023) 024303. https://doi.org/10.1103/PhysRevC.108.024303

P.A. Butler, Octupole collectivity in nuclei, J. Phys. G: Nucl. Part. Phys. 43 (2016) 073002-26. https://doi.org/10.1088/0954-3899/43/7/073002

K. Nomura, D. Vretenar, T. Niksic, and Bing-Nan Lu, Phys. Rev. C 89, 024312 (2014)10.1103/PhysRevC.89.024312

A. Arima, F. Iachello, Interacting boson model of collective states I. The vibrational limit, Ann. Phys. 99 (1976) 253-317. https://doi.org/10.1016/0003-4916(76)90097-X

A. Arima, F. Iachello, Interacting boson model of collective nuclear states II. The rotational limit, Ann. Phys. 111, (1978) 201-238. https://doi.org/10.1016/0003-4916(78)90228-2

A. Arima, F. Iachello, Interacting boson model of collective nuclear states IV. The O(6) limit, Ann. Phys. 123 (1979) 468-492. https://doi.org/10.1016/0003-4916(79)90347-6

R. F. Casten, D. D. Warner, The interacting boson approximation, Rev. Mod. Phys. 60 (1988) 389-469. https://doi.org/10.1103/RevModPhys.60.389

Y. X. Liu, H. Z. Sun, E. Zhao, Dynamical symmetries of the spdf interacting boson model, J. Phys. G: Nucl. Phys. 20 (1994) 407-424, https://doi.org/ 10.1088/0954-3899/20/3/003.

N. V. Zamfir, D. Kusnezov, Octupole correlations in the transitional actinides and the spdf interacting boson model, Phys. Rev. C 63 ( 2001) 054306-9. https://doi.org/10.1103/PhysRevC.63.054306

N. V. Zamfi, D. Kusnezov, Octupole correlations in U and Pu nuclei, Phys. Rev. C 67, (2003) 014305-8, https://doi.org/10.1103/PhysRevC.67.014305

K. Nomura, D. Vretenar, T. Niksic, B. N. Lu , Microscopic description of octupole shape-phase transitions in light actinide and rare-earth nuclei, Phys. Rev. C 89 (2014) 024312-16, https://doi.org/10.1103/PhysRevC.89.024312

H. N. Qasim, F. H. Al-Khudair, Nuclear shape phase transition in even-even 158−168Hf isotopes Nucl. Phys. A1002(2020)121962-17. https://doi.org/10.1016/j.nuclphysa.2020.121962

K. Heyde, P. Van Isacker, M. Waroquier, J. Moreau, Triaxial shapes in the interacting boson model , Phys. Rev. C 29 (1984) 1420-1427, https://doi.org/10.1103/PhysRevC.29.1420

O. Scholten, The Program Package PHINT, internal report KVI-63, Kerfysisch Versneller Instituut, Groningen, Netherlands

ENSDF, Nuclear data Sheet (2025). http://www.nndc.bnl.gov/ensdf.

J. N. Ginocchio, M.W. Kirson, Relationship between the Bohrcollective Hamiltonian and the interacting boson model, Phys. Rev. Lett. 44 (1980) 1744-1747. https://doi.org/10.1103/PhysRevLett.44.1744

15

Downloads

Published

30-06-2025

Issue

Section

Articles

How to Cite

Investigating levels scheme of 226-236U isotopes using interacting boson model. (2025). Basrah Researches Sciences, 51(1), 15. https://jou.jobrs.edu.iq/index.php/home/article/view/293