Reconstruction of Time-Dependent Source Terms in Fractional Diffusion Equations Using Carleman Estimates and Optimization Algorithms
DOI:
https://doi.org/10.56714/bjrs.51.2.7Keywords:
Carleman estimates, fractional diffusion, inverse problems, source reconstructionAbstract
This paper investigates the inverse problem of reconstructing time-dependent source terms in time-fractional diffusion equations with Caputo derivatives, which are widely used to model anomalous subdiffusive processes. The objective is to recover the temporal behaviour of unknown source functions from final-time boundary measurements. The methodology integrates both analytical and computational steps. First, a new Carleman estimate is established, ensuring uniqueness and conditional stability of the inverse problem. Next, this theoretical guarantee is used to design a numerical inversion framework. The forward problem is discretized using finite-difference and spectral schemes, and the source term is reconstructed through a regularized Levenberg–Marquardt optimization algorithm. Numerical experiments are then performed on synthetic and perturbed datasets to evaluate the accuracy and stability of the method. Results demonstrate strong resilience to noise and precise recovery of source terms under various test conditions. To the best of our knowledge, this is the first work to apply Carleman estimates to inverse problems in time-fractional diffusion equations, providing both theoretical validation and numerical implementation. The approach is applicable in diverse fields, including geophysics, biomedical imaging, and environmental monitoring.
Downloads
References
[1] Z. Li and M. Yamamoto, “Inverse problems of determining coefficients of the fractional partial differential equations,” in Handbook of Fractional Calculus with Applications, vol. 2, Berlin, Germany: De Gruyter, 2019, pp. 443–464. doi: https://doi.org/10.1515/9783110571622-021 DOI: https://doi.org/10.1515/9783110571660-020
[2] Y. Liu, Z. Li, and M. Yamamoto, “Inverse problems of determining sources of the fractional partial differential equations,” in Handbook of Fractional Calculus with Applications, vol. 2, Berlin, Germany: De Gruyter, 2019, pp. 411–430. doi: https://doi.org/10.1515/9783110571622-020 DOI: https://doi.org/10.1515/9783110571660-018
[3] T. Wei and Z. Q. Zhang, “Reconstruction of a time-dependent source term in a time-fractional diffusion equation,” Eng. Anal. Bound. Elem., vol. 37, no. 1, pp. 23–31, 2013. doi: https://doi.org/10.1016/j.enganabound.2012.08.003 DOI: https://doi.org/10.1016/j.enganabound.2012.08.003
[4] M. Alosaimi, I. Tekin, and M. A. Cetin, “Restoration of the merely time-dependent lowest term in a linear bi-flux diffusion equation,” Comput. Appl. Math., vol. 43, Art. no. 417, Sep. 2024. doi: https://doi.org/10.1007/s40314-024-02937-7 DOI: https://doi.org/10.1007/s40314-024-02937-7
[5] W. Ma and L. Sun, “Inverse potential problem for a semilinear generalized fractional diffusion equation with spatio-temporal dependent coefficients,” Inverse Probl., vol. 39, no. 1, Art. no. 015005, 2022. doi: https://doi.org/10.1088/1361-6420/aca49e DOI: https://doi.org/10.1088/1361-6420/aca49e
[6] P. Niu, T. Helin, and Z. Zhang, “An inverse random source problem in a stochastic fractional diffusion equation,” Inverse Probl., vol. 36, no. 4, Art. no. 045002, Feb. 2020. doi: https://doi.org/10.1088/1361-6420/ab532c DOI: https://doi.org/10.1088/1361-6420/ab532c
[7] L. Qiu, Z. Wang, H. Yu, and S. Yu, “Traceability of water pollution: An inversion scheme via dynamic complex geometrical optics solutions,” SIAM J. Math. Anal., vol. 57, no. 1, pp. 286–305, Jan. 2025. doi: https://doi.org/10.1137/23M1619605 DOI: https://doi.org/10.1137/23M1619605
[8] C. L. Sun and J. J. Liu, “Reconstruction of the space-dependent source from partial Neumann data for a slow diffusion system,” Acta Math. Appl. Sin., Engl. Ser., vol. 36, no. 1, pp. 166–182, 2020. Doi: https://doi.org/10.1007/s10255-020-0919-2 DOI: https://doi.org/10.1007/s10255-020-0919-2
[9] C. Sun, G. Li, and X. Jia, “Numerical inversion for the initial distribution in the multi-term time-fractional diffusion equation using final observations,” Adv. Appl. Math. Mech., vol. 9, no. 6, pp. 1525–1546, 2017. Doi: https://doi.org/10.4208/aamm.OA-2016-0170 DOI: https://doi.org/10.4208/aamm.OA-2016-0170
[10] D. Zhang, G. Li, X. Jia, and H. Li, “Simultaneous inversion for space-dependent diffusion coefficient and source magnitude in the time fractional diffusion equation,” J. Math. Res., vol. 5, no. 2, p. 65, 2013. doi: https://doi.org/10.5539/jmr.v5n2p65 DOI: https://doi.org/10.5539/jmr.v5n2p65
[11] X. Gong and T. Wei, “Reconstruction of a time-dependent source term in a time-fractional diffusion-wave equation,” Inverse Probl. Sci. Eng., vol. 27, no. 11, pp. 1577–1594, 2019. doi: https://doi.org/10.1080/17415977.2018.1539481 DOI: https://doi.org/10.1080/17415977.2018.1539481
[12] M. Ben Salah, “Topological sensitivity method for reconstruction of the spatial component in the source term of a time-fractional diffusion equation,” Ricerche di Matematica, vol. 72, no. 2, pp. 599–624, 2023. doi: https://doi.org/10.1007/s11587-020-00553-1 DOI: https://doi.org/10.1007/s11587-020-00553-1
[13] Y. Kian, E. Soccorsi, and F. Triki, “Logarithmic stable recovery of the source and the initial state of time fractional diffusion equations,” SIAM J. Math. Anal., vol. 55, no. 4, pp. 3888–3902, 2023. doi: https://doi.org/10.1137/22M1504743 DOI: https://doi.org/10.1137/22M1504743
[14] D. Jiang and Z. Li, “Coefficient inverse problem for variable order time-fractional diffusion equations from distributed data,” Calcolo, vol. 59, Art. no. 34, 2022. Doi: https://doi.org/10.1007/s10092-022-00476-3 DOI: https://doi.org/10.1007/s10092-022-00476-3
[15] Z. Li and X. Xiong, “A new iteration algorithm with relaxation factor for the Cauchy problem of time-fractional diffusion equation,” J. Appl. Anal. Comput., vol. 15, no. 5, pp. 2959–2976, 2025. doi: https://doi.org/10.11948/20240354 DOI: https://doi.org/10.11948/20240354
[16] J. Wen, X. J. Ren, and S. J. Wang, “Simultaneous determination of source term and the initial value in the space-fractional diffusion problem by a modified quasi-reversibility regularization method,” Phys. Scr., vol. 98, no. 2, Art. no. 025201, 2023. Doi: https://doi.org/10.1088/1402-4896/acaa68 DOI: https://doi.org/10.1088/1402-4896/acaa68
[17] S. Chen, D. Jiang, and H. Wang, “Simultaneous identification of initial value and source strength in a transmission problem for a parabolic equation,” Adv. Comput. Math., vol. 48, Art. no. 77, 2022. Doi: https://doi.org/10.1007/s10444-022-09983-x DOI: https://doi.org/10.1007/s10444-022-09983-x
[18] Z. Ruan, Q. Hu, and W. Zhang, “Identification of a time-dependent control parameter for a stochastic diffusion equation,” Comput. Appl. Math., vol. 40, Art. no. 201, 2021. Doi : https://doi.org/10.1007/s40314-021-01598-0 DOI: https://doi.org/10.1007/s40314-021-01598-0
[19] R. Prakash, M. Hrizi, and A. A. Novotny, “A noniterative reconstruction method for solving a time-fractional inverse source problem from partial boundary measurements,” Inverse Probl., vol. 38, no. 1, Art. no. 015002, 2021. doi: https://doi.org/10.1088/1361-6420/ac38b6 DOI: https://doi.org/10.1088/1361-6420/ac38b6
[20] M. H. Ding and G. H. Zheng, “Determination of the reaction coefficient in a time-dependent nonlocal diffusion process,” Inverse Probl., vol. 37, no. 2, 2021. doi: https://doi.org/10.1088/1361-6420/abd384 DOI: https://doi.org/10.1088/1361-6420/abd384
[21] S. M. Rashid and A. Nachaoui, “A Haar wavelets-based direct reconstruction method for the Cauchy problem of the Poisson equation,” Discrete Contin. Dyn. Syst. Ser. S, vol. 18, no. 1, pp. 148–168, 2025. doi: https://doi.org/10.3934/dcdss.2023075 DOI: https://doi.org/10.3934/dcdss.2023075
[22] K. Rashedi, “Finding a time-dependent reaction coefficient of a nonlinear heat source in an inverse heat conduction problem,” J. Math. Model., vol. 12, no. 1, pp. 17–32, 2024.
[23] L. Hu, Z. Li, and X. Yang, “A strong positivity property and a related inverse source problem for multi-term time-fractional diffusion equations,” Acta Math. Sci., vol. 44, pp. 2019–2040, 2024. Doi: https://doi.org/10.1007/s10473-024-0523-2 DOI: https://doi.org/10.1007/s10473-024-0523-2
[24] J. J. Liu, M. Yamamoto, and L. L. Yan, “On the reconstruction of unknown time-dependent boundary sources for a time fractional diffusion process by distributing measurements,” Inverse Probl., vol. 32, no. 1, Art. no. 015009, 2015. doi: https://doi.org/10.1088/0266-5611/32/1/015009 DOI: https://doi.org/10.1088/0266-5611/32/1/015009
[25] S. M. Rasheed, A. Nachaoui, M. F. Hama, and A. K. Jabbar, “Regularized and preconditioned conjugate gradient-like methods for polynomial approximation of an inverse Cauchy problem,” Adv. Math. Models Appl., vol. 6, no. 2, pp. 89–105, 2021.
[26] L. Li, “An inverse problem for the space-time fractional Schrödinger equation on closed manifolds,” arXiv:2410.20795, 2024. doi: https://doi.org/10.48550/arXiv.2410.20795
[27] T. Wei, X. L. Li, and Y. S. Li, “An inverse time-dependent source problem for a time-fractional diffusion equation,” Inverse Probl., vol. 32, no. 8, Art. no. 085003, 2016. Doi: https://doi.org/10.1088/0266-5611/32/8/085003 DOI: https://doi.org/10.1088/0266-5611/32/8/085003
[28] L. Sun and M. Chang, “On the reconstruction of convection coefficient in a semilinear anomalous diffusion system,” Taiwan. J. Math., vol. 26, no. 5, pp. 927–951, 2022.
[29] W. Rundell, “Recovery of a coefficient in a diffusion equation from large time data,” Inverse Probl., vol. 40, no. 12, Art. no. 125013, 2024. Doi: https://doi.org/10.1088/1361-6420/ad904c DOI: https://doi.org/10.1088/1361-6420/ad904c
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Basrah Researches Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.





