Model Calculation for the Chemisorption of Li and Na Atoms on Bilayer Graphene
DOI:
https://doi.org/10.56714/bjrs.51.2.20Keywords:
Bilayer Graphene, Chemisorption, Anderson-Newns ModelAbstract
The Anderson-Newns model is used to study the chemisorption process of lithium and sodium atoms on bilayer graphene. The density of states of bilayer graphene is employed, along with the effects of quantum coupling represented by broadening and quantum shift to calculate the electronic properties, magnetization and chemisorption energy. The self-consistent solutions of the atomic occupation numbers revealed that the solution is magnetic at relatively large distances from bilayer graphene, and turn into non-magnetic one at certain close distance. The relationship between the magnetization of atoms and their distance from bilayer plane can be exploited in spintronics applications. Moreover, the ionic contribution to the chemisorption energy dominates at closest approach distances, providing a clear description of the bonding nature with bilayer graphene. These results can take advantage for experimental applications in storage of null magnetization atoms on two dimensional materials
Downloads
References
[1] I. J. Vera-Marun, V. Ranjan, and B. J. van Wees, “Nonlinear detection of spin currents in graphene with non-magnetic electrodes,” Nature Physics, vol. 8, pp. 313–316, 2012, doi: 10.1038/NPHYS2219. DOI: https://doi.org/10.1038/nphys2219
[2] J. F. Sierra, I. Neumann, J. Cuppens, B. Raes, M. V. Costache, and S. O. Valenzuela, “Thermoelectric spin voltage in graphene,” Nature Nanotechnology, vol. 13, pp. 107–111, 2018, doi: 10.1038/s41565-017-0015-9. DOI: https://doi.org/10.1038/s41565-017-0015-9
[3] K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature, vol. 490, pp. 192–200, 2012, doi: 10.1038/nature11458. DOI: https://doi.org/10.1038/nature11458
[4] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nature Nanotechnology, vol. 5, pp. 722–726, 2010, doi: 10.1038/nnano.2010.172. DOI: https://doi.org/10.1038/nnano.2010.172
[5] K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, “Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene,” Nature Physics, vol. 2, pp. 177–180, 2006, doi: 10.1038/nphys245. DOI: https://doi.org/10.1038/nphys245
[6] A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials,” Nature Materials, vol. 10, pp. 569–581, 2011, doi: 10.1038/nmat3064. DOI: https://doi.org/10.1038/nmat3064
[7] Y. Y. Zhang, C. M. Wang, Y. Cheng, and Y. Xiang, “Mechanical properties of bilayer graphene sheets coupled by sp³ bonding,” Carbon, vol. 49, pp. 4511–4517, 2011, doi: 10.1016/j.carbon.2011.06.058. DOI: https://doi.org/10.1016/j.carbon.2011.06.058
[8] J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Impermeable atomic membranes from graphene sheets,” Nano Letters, vol. 8, pp. 2458–2462, 2008, doi: 10.1021/nl801457b. DOI: https://doi.org/10.1021/nl801457b
[9] K. Kanetani, K. Sugawara, T. Sato, R. Shimizu, K. Iwaya, T. Hitosugi, and T. Takahashi, “Ca-intercalated bilayer graphene as the thinnest limit of superconducting C₆Ca,” Proceedings of the National Academy of Sciences, vol. 109, pp. 19610–19613, 2012, doi: 10.1073/pnas.1208889109. DOI: https://doi.org/10.1073/pnas.1208889109
[10] D. W. Boukhvalov and M. I. Katsnelson, “Tuning the gap in bilayer graphene using chemical functionalization: Density functional calculations,” Physical Review B, vol. 78, Art. no. 085413, 2008, doi: 10.1103/PhysRevB.78.085413. DOI: https://doi.org/10.1103/PhysRevB.78.085413
[11] C. F. Destefani, S. E. Ulloa, and G. E. Marques, “Spin-orbit coupling and intrinsic spin mixing in quantum dots,” Physical Review B, vol. 69, Art. no. 125302, 2004, doi: 10.1103/PhysRevB.69.125302. DOI: https://doi.org/10.1103/PhysRevB.69.125302
[12] Q. F. Sun and X. C. Xie, “Bias-controllable intrinsic spin polarization in a quantum dot: Proposed scheme based on spin-orbit interaction,” Physical Review B, vol. 73, Art. no. 235301, 2006, doi: 10.1103/PhysRevB.73.235301. DOI: https://doi.org/10.1103/PhysRevB.73.235301
[13] A. Kormányos, V. Zólyomi, N. D. Drummond, and G. Burkard, “Spin–orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides,” Physical Review X, vol. 4, Art. no. 011034, 2014, doi: 10.1103/PhysRevX.4.011034. DOI: https://doi.org/10.1103/PhysRevX.4.011034
[14] A. H. MacDonald, “Bilayer graphene’s wicked, twisted road,” Physics, vol. 12, 2019, doi: 10.1103/Physics.12.12. DOI: https://doi.org/10.1103/Physics.12.12
[15] H. H. Fu, D. D. Wu, L. Gu, M. H. Wu, and R. Q. Wu, “Design for a spin-Seebeck diode based on two-dimensional materials,” Physical Review B, vol. 92, Art. no. 045418, 2015, doi: 10.1103/PhysRevB.92.045418. DOI: https://doi.org/10.1103/PhysRevB.92.045418
[16] S. Park, N. Nagaosa, and B. J. Yang, “Thermal Hall effect, spin Nernst effect, and spin density induced by thermal gradient in collinear ferrimagnets from magnon–phonon interaction,” Nano Letters, vol. 20, pp. 2741–2746, 2020, doi: 10.1021/acs.nanolett.9b05276. DOI: https://doi.org/10.1021/acs.nanolett.0c00363
[17] G. M. Choi, C. H. Moon, B. C. Min, K. J. Lee, and D. G. Cahill, “Thermal spin-transfer torque driven by the spin-dependent Seebeck effect in metallic spin valves,” Nature Physics, vol. 11, pp. 576–581, 2015, doi: 10.1038/nphys3355. DOI: https://doi.org/10.1038/nphys3355
[18] J. Pan et al., “Topological valley transport in bilayer graphene induced by interlayer sliding,” Physical Review Letters, vol. 135, Art. no. 126603, 2025, doi: 10.1103/PhysRevLett.135.126603. DOI: https://doi.org/10.1103/26q7-dsm1
[19] Z. Zhang, J. Dong, H. Hu, Y. Guo, and H. Liu, “Temperature-gradient-controlled spin current rectification in a semiconductor quantum dot,” Journal of Applied Physics, vol. 137, Art. no. 193902, 2025, doi: 10.1063/5.0266579. DOI: https://doi.org/10.1063/5.0266579
[20] D. Prete et al., “Thermoelectric conversion at 30 K in InAs/InP nanowire quantum dots,” Nano Letters, vol. 19, pp. 3033–3039, 2019, doi: 10.1021/acs.nanolett.9b00442. DOI: https://doi.org/10.1021/acs.nanolett.9b00276
[21] Y. L. Feng, Z. L. Wang, X. Zuo, and G. Y. Gao, “Electronic phase transition, spin filtering effect, and spin Seebeck effect in 2D high-spin-polarized VSi₂X₄ (X = N, P, As),” Applied Physics Letters, vol. 120, Art. no. 092405, 2022, doi: 10.1063/5.0086990. DOI: https://doi.org/10.1063/5.0086990
[22] P. W. Anderson, “Localized magnetic states in metals,” Physical Review, vol. 124, no. 1, pp. 41–53, 1961, doi: 10.1103/PhysRev.124.41. DOI: https://doi.org/10.1103/PhysRev.124.41
[23] D. M. Newns, “Self-consistent model of hydrogen chemisorption,” Physical Review, vol. 178, pp. 1123–1135, 1969, doi: 10.1103/PhysRev.178.1123. DOI: https://doi.org/10.1103/PhysRev.178.1123
[24] T. B. Grimley, “The indirect interaction between atoms or molecules adsorbed on metals,” Proceedings of the Physical Society, vol. 90, no. 3, pp. 751–760, 1967, doi: 10.1088/0370-1328/90/3/320. DOI: https://doi.org/10.1088/0370-1328/90/3/320
[25] J. W. Gadzuk, J. K. Hartman, and T. N. Rhodin, “Approach to alkali-metal chemisorption within the Anderson model,” Physical Review B, vol. 4, pp. 241–249, 1971, doi: 10.1103/PhysRevB.4.241. DOI: https://doi.org/10.1103/PhysRevB.4.241
[26] A. R. Al-Ebady, J. M. Al-Mukh, and S. I. Easa, “Theoretical study of the chemisorption of alkali atoms on graphene sheets,” Basrah Journal of Science, vol. 36, pp. 29–44, 2018, doi: 10.29072/basjs.2018104.
[27] A. R. Ahmed, “The electric field effect on the chemisorption of Cu atoms on perfect graphene,” Basrah Journal of Science, vol. 41, pp. 96–107, 2023. DOI: https://doi.org/10.29072/basjs.20230107
[28] G. S. Kliros, “A phenomenological model for the quantum capacitance of monolayer and bilayer graphene devices,” Romanian Journal of Information Science and Technology, vol. 13, pp. 332–341, 2010, doi: 10.48550/arXiv.1105.5827.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Basrah Researches Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.





