The effect of gamma-irradiation on absorption spectrum of fluorescein dye

Authors

  • Rajaa.M. Abdullah Department of Material Science, Polymer Research Centre, University of Basrah, Basrah, Iraq
  • Riyadh Ch. Abul-Hail Department of Physics, College of Education for pure Sciences, University of Basrah, Basrah, Iraq
  • Hussain A. Badran Department of Physics, College of Education for Pure Sciences, University of Basrah, Basrah, Iraq.

DOI:

https://doi.org/10.56714/bjrs.49.1.12

Keywords:

Fluorescein dye, Dose response, Gamma irradiation, Solvent; Waviness

Abstract

In this study, the fluorescein dye was dissolved in the solvent Dimethyl Form amide (DMF). Weighed equivalent to 0.0664, 0.0996 and 0.132 gm from the material. Using 5mM of solvent, each weight of the substance was dissolved separately to obtain the concentration 60 and 80 mM respectively. The effects of both concentration and gamma radiation on optical spectrum of all samples were investigated at room temperature. After irradiation and within the different concentration percentage at fix dose (4.7 KGy), where the results showed increase absorbance with increase concentration (40, 60 and 80 mM). Also, it is found that the decrease absorbance spectrums at wavelength 460 and 487 nm with increase dose and the good stability absorbance spectrum with time. Because of this, the structures in question are regarded as an efficient material for carrying out real-time gamma radiation dosimetry at ambient temperature.

Downloads

Download data is not yet available.

References

D. Alexiev, L. Mo, D. A. Prokopovich, M. L. Smith, M. Matuchova, IEEE Transactions on Nuclear Science 55(3), 1174 (2020).

N. J. Cherepy, S. A. Payne, S. J. Asztalos et al., IEEE Transactions on Nuclear Science, 56(3), 873 (2010).

P. R. Menge, G. Gautier, A. Iltis, C. Rozsa, V. Solovyev, Detectors and Associated Equipment 579(1), 6 (2007).

A. Salem, “A Study on the Structural, Electrical and Dielectric Properties of Fluorescein Dye as a New Organic Semiconductor Material.” Brackman. U.”Laser Dyes”, 3rd edition (2000), Lambda physics.

D. Mage, R. Wong, P. G. Seybold, Photochemistry And Photobiology 75(4), 327 (2002).

D.W. Randall, Fluorescein angiography basic science and engineering, Ophthalmology 93(12),1617 (1986),

G. Kr Deshwal, N. Raju Panjagari, T. Alam, Journal of Food Science and Technology 56(10), 4391 (2019).

M. Haji-Saeid, M. H. O. Sampa, A. G. Chmielewski. Radiation Physics and Chem-istry, 76(8), 1535 (2007).

E. K. Elmaghraby, S. Abdelaal, A.M. Abdelhady, S. Fares, S. Salama, N.A. Mansour. Detectors and Associated Equipment 949, 162889 (2020).

T. A. Salama, E. K. Elmaghraby, Radiat. Protect. Dosimetry 140(3), 18 (2010).

J. R. Cameron, N.Suntharalingan, G. kenney, Thermoluminescent Dosimetry University of Wisconsin press 1968.

R. Smoluchowski, N. Kurti, Color Centers In Solids .V2 Pergamon Press Oxford.

London New York. Paris 1963.

H. A. Bdran, R. CH. Abul-hail, M. T. Obeed, Study on effect of gamma radiation on

some linear and nonlinear properties of Pyronine Y,AIP Conference Proceedings 2290, 050035 (2020).

T. M. Salman, A. Y. AL-Ahmad, H. A. Badran, C. A. Emshary, Diffused transmission of

laser beam and image processing tools for alpha-particle track-etch dosimetry in PM-355

SSNTDs Phys. Scr. 90, 9 (2015).

S. Brazovskii , K irovo. N, A. R. Bishop, V. Klimov, D. Mcbrauch, N. N. Barashkow, J. P Ferraris , OPT. Mater (Amsterdam , Neth.) 9, 472 (1998).

R. K. F. Alfahed, A. Imran, M. S. Majeed, H. Ali Badran, Phys. Scr. 95, 8 (2020).

M. T. Obeed, R. Ch. Abul-Hail, H. A. Badran, Journal of Basrah Researches (Sciences), 46(1), 49 (2020).

Downloads

Published

30-06-2023

How to Cite

Abdullah, R., Abul-Hail, R. C., & Badran, H. A. (2023). The effect of gamma-irradiation on absorption spectrum of fluorescein dye. J. Basrah Res. (Sci.), 49(1), 141–149. https://doi.org/10.56714/bjrs.49.1.12

Issue

Section

Articles