A Review on Cartan’s Structure Equations for Certain Classes of Almost Contact Metric Manifolds
DOI:
https://doi.org/10.56714/bjrs.49.2.1Keywords:
Kenmotsu manifolds, Cartan’s structure equations, Sasakian manifolds, nearly cosymplectic manifoldsAbstract
This article is review the first group of Cartan’s structure equations for certain classes of almost contact metric manifolds. These classes are divide into two collections, the first involve the irreducible classes such as cosymplectic class, Kenmotsu class, Sasakian class, - class, - class, and - class. The second include normal class of Killing type (CNK-class), nearly Kenmotsu class, - class, - class, nearly cosymplectic class, and Kenmotsu type class
Downloads
References
V.F. Kirichenko, "Differential-Geometric Structures on Manifolds", Pechatnyy dom, Odessa, (2013). (in Russian)
D. Chinea, C. Gonzalez, Annali di Matematica Pura ed Applicata 156(1), 15 (1990).
Doi: https://doi.org/10.1007/BF01766972
E.S. Volkova, Mathematical Notes 6(3), 296 (1997).
Doi: https://doi.org/10.1007/BF02360870
S.V. Umnova, "Geometry of Kenmotsu manifolds and their generalizations", PhD thesis, Moscow State Pedagogical University, Moscow, (2002). (in Russian).
N.N. Dondukova, "Geodesic transformations of almost contact metric manifolds", PhD thesis, Moscow State Pedagogical University, Moscow, (2006). (in Russian)
A.R. Rustanov, N.N. Shchipkova, Vestnik OSU. (9), 65 (2010). (in Russian)
A.R. Rustanov, N.N. Shchipkova, Vestnik OSU. (1), 132 (2013). (in Russian)
A.R. Rustanov, A.I. Yudin, T.L. Melekhina, Izvestiya Vuzov. Severo-Kavkazskii Region. Natural Science (1), 33 (2019). (in Russian)
Doi: https://doi.org/10.23683/0321-3005-2019-1-33-40
H.İ. Yoldaş, Ş.E. Merİç, E. Yaşar, Miskolc Mathematical Notes 22(2), 1039 (2021).
Doi: https://doi.org/10.18514/MMN.2021.3221
A. Rustanov, Axioms 11, 152 (2022).
Doi: https://doi.org/10.3390/axioms11040152
K. Kenmotsu, Tôhoku Math. J. 24(1), 93 (1972).
Doi: https://doi.org/10.2748/tmj/1178241594
A. De Nicola, G. Dileo, I. Yudin, Annali di Matematica 197(1), 127 (2018).
Doi: https://doi.org/10.1007/s10231-017-0671-2
M.Y. Abass, "Geometry of certain curvature tensors of almost contact metric manifold", PhD thesis, College of Education for Pure Sciences, University of Basrah, (2020).
A. Abu-Saleem, I.D. Kochetkov, A.R. Rustanov, IOP Conference Series: Materials Science and Engineering, Volume 918, VIII International Scientific Conference Transport of Siberia – 2020, 22-27 May 2020, Novosibirsk, Russia, 012062 (2020).
Doi: https://doi.org/10.1088/1757-899X/918/1/012062
A.R. Rustanov, Prepodavatel’ XXI vek (3), 209 (2014). (in Russian)
H.M. Abood, M.Y. Abass, Tamkang J. Math. 52(2), 253 (2021).
Doi: https://doi.org/10.5556/j.tkjm.52.2021.3276
W.M. Boothby, "An introduction to differentiable manifolds and Riemannian geometry", Academic Press, New York, (1975).
V.F. Kirichenko, E.V. Kusova, J. Math. Sci. 177(5), 668 (2011).
Doi: https://doi.org/10.1007/s10958-011-0494-4
V.F. Kirichenko, N.N. Dondukova, Math. Notes 80(2), 204 (2006).

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 J. Basrah Res. (Sci.)

This work is licensed under a Creative Commons Attribution 4.0 International License.