Transitional character of Nd-Dy (N=90) isotones in IBM model
DOI:
https://doi.org/10.56714/bjrs.49.2.5Keywords:
IBM-1, energy levels, B(E2)Abstract
The Interacting Boson Model is used to study the level structure of ground state, beta, and gamma bands in150Nd, 152Sm, 154Gd and 156Dy (N = 90) isotones. The energy ratios and are compared to the predictions of U(5), SU(3), and X(5) symmetry. The calculated reduced transition probabilities as well as quadrupoles moments were compared to experimental data. IBM-1 investigates the properties of the potential energy surface to determine the nuclear shape of the Nd-Dy (N=90) isotones
Downloads
References
F. Iachello et al., Nuclear structure. Pub.(Plenum, New York and London) Ed. Abrahams K., Allaart K., and Diapering AEL, 1981.
F. Iachello, A. Arima, Mod. Phys 59, 339 (1987).
O. Scholten, The interacting boson approximation model and applications. 1980.
R. Casten, D. Warner, Reviews of Modern Physics 60(2), 389 (1988). Doi: https://doi.org/10.1103/RevModPhys.60.389
P. Cejnar, J. Jolie, R.F. Casten, Reviews of Modern Physics 82(3), 2155 (2010). Doi:https://doi.org/10.1103/RevModPhys.82.2155
A. Arima, F. Iachello, Annual Review of Nuclear and Particle Science 31(1), 75 (1981).
A. Arima, F. Iachello, Annals of Physics 123(2), 468 (1979). Doi: https://doi.org/10.1016/0003-4916(79)90347-6
A. Arima, F. Iachello, Annals of Physics 111(1), 201 (1978). Doi: https://doi.org/10.1016/0003-4916(78)90228-2
A. Arima, F. Iachello, Annals of Physics 99(2), 253 (1976). Doi:https://doi.org/10.1006/aphy.2000.6007
F. Iachello, Physical Review Letters 85(17), 3580 (2000). Doi:https://doi.org/10.1103/PhysRevLett.85.3580
F. Iachello, Physical Review Letters 87(5), 052502 (2001). Doi:https://doi.org/10.1103/PhysRevLett.87.052502
J. Gupta, Journal of Physics G: Nuclear and Particle Physics 21(4), 565 (1995). Doi:https://doi.org/10.1088/0954-3899/21/4/008
L. Li-Jun, Z. Jin-Fu, Chinese Physics C 30(2),128 (2006).
F. Sharrad et al., Armenian Journal of Physics 5(3),111 (2012).
A. Khalaf, T. Awwad, Progress in Physics 1, 7 (2013).
F. H. Al-Khudair et al, Commun. Theor. Phys 62(6), 847 (2014). Doi:https://doi.org/10.1088/0253-6102/62/6/12
A.M. Khalaf, M.M. Taha, Journal of Theoretical and Applied Physics 9(2), 127 (15). Doi:https://doi.org/10.1007/s40094-015-0170-z
J. Gupta, Physical Review C 92(4), 044316 (2015). Doi:https://doi.org/10.1103/PhysRevC.92.044316
S.A. Eid, X . Diab, PROGRESS 12,170 (2016).
S.Y. Lee, J. Lee, Y.J. Lee, Journal of the Korean Physical Society 72, 1147 (2018). Doi:https://doi.org/10.3938/jkps.72.1147
H.N. Qasim, F.H. Al-Khudair, International Journal of Modern Physics E 28(12) 1950107 (2019). Doi: https://doi.org/10.1142/S0218301319501076
H. Baoyue et al., 原子核物理评论 38(4), 368 (2021). Doi:http://dx.doi.org/10.11804/NuclPhysRev.38.2021059
E. Balbutsev et al., Physical Review C 105(4), 044323 (2022). Doi:https://doi.org/10.1103/PhysRevC.105.044323
B. He, S. Zhang, L. Li, Y. Luo, Y. Zhang, F. Pan, et al, Physical Review C 105(4), 044332 (2022). Doi:https://doi.org/10.1103/PhysRevC.105.044332
A. Arima, F. Iachello, Springer , 139 (1984). Doi:https://doi.org/10.1007/978-1-4613-9892-9_2
R.F. Casten, D.D. Warner, Reviews of Modern Physics 60(2), 389 (1988). Doi:https://doi.org/10.1103/RevModPhys.60.389
F. Radhi, N. Stewart, Zeitschrift für Physik A Hadrons and Nuclei 356(1), 145 (1996). Doi:https://doi.org/10.1007/BF02769211
A. Dieperink, O. Scholten, F. Iachello, Physical Review Letters 44(2), 1747 (1980). Doi:https://doi.org/10.1103/PhysRevLett.44.1747
O. Scholten, Computer code PHINT, KVI. Groningen Holland (1980).
www.nndc.bnl.gov/ensdf/2022.
M. Kotb, Physics of Particles and Nuclei Letters 13, 451 (2016). Doi:https://doi.org/10.1134/S1547477116040075
J. Stachel, P. Van Isacker, K. Heyde, Physical review C 25(1), 650 (1982). Doi:https://doi.org/10.1103/PhysRevC.25.650

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 J. Basrah Res. (Sci.)

This work is licensed under a Creative Commons Attribution 4.0 International License.