Development of A Sequential CNN Model With Three Hidden Layers For Diabetes Prediction
DOI:
https://doi.org/10.56714/bjrs.49.2.14Keywords:
Deep Learning, Diabetes, Health Care, Convolutional Neural Network, Disease predictionAbstract
The early diagnosis and treatment of diabetes can contribute to the mitigation of associated risks and effects. Therefore, it is imperative to anticipate and identify the ailment at an early stage through the utilization of dependable procedures that can offer forecasts characterized by a substantial level of dependability and precision. This study utilizes the Diabetes Readmission Dataset, comprising 101,766 records and encompassing 50 features. After selecting the most pertinent features, the dataset is partitioned into a training set and a test set. Subsequently, a sequential model employing deep learning, specifically a convolutional neural network (CNN) with three hidden layers, is constructed for prediction purposes. The correctness of the model was assessed through the utilization of performance testing metrics, resulting in a recorded accuracy rate of 99.53%. The findings of this study have the potential to inform the development of personalized treatment approaches that address the individualized requirements of patients, hence enhancing the quality of healthcare provide.
Downloads
References
A. M. Egan, S. F. Dinneen, Medicine, 47 (2019). Doi:https://doi.org/10.1016/j.mpmed.2018.10.002
S. Benbelkacem, B. Atmani, 2019 International Conference on Computer and Information Sciences (ICCIS) (2019).
S. Saru, S. Subashree, International Journal of Emerging Technology and Innovative Engineering (2019).
T. Zhu, K. Li, P. Herrero,P. Georgiou, IEEE Journal of Biomedical and Health Informatics, 25 (2020).
A. Choudhury, D. Gupta, "A survey on medical diagnosis of diabetes using machine learning techniques." in Recent Developments in Machine Learning and Data Analytics: IC3 2018. Springer Singapore, (2019). Doi:https://doi.org/10.1007/978-981-13-1280-9_6
M. D. Owens-Gary, X. Zhang, S. Jawanda, K. M. Bullard, P. Allweiss, B. D. Smith, Journal of General Internal Medicine 34(2),320 (2019). Doi:https://doi.org/10.1007/s11606-018-4705-2
T. Zhu, K. Li, P. Herrero, P. Georgiou, IEEE Journal of Biomedical and Health Informatics 25(7), 2744 (2020). Doi:https://doi.org/10.1109/JBHI.2020.3040225
M. A. Sarwar, N. Kamal, W. Hamid, M. A. Shah, 2018 24th International Conference on Automation and Computing (ICAC) (2018). Doi:https://doi.org/10.23919/IConAC.2018.8748992
G. Swapna, R. Vinayakumar, K. P. Soman, ICT Express, 243 (2018). Doi:https://doi.org/10.1016/j.icte.2018.10.005
D. Sisodia, D. S. Sisodia, Procedia Computer Science 132, 1585 (2018). Doi:https://doi.org/10.1016/j.procs.2018.05.122
S. I. Ayon, M. M. Islam, International Journal of Information Engineering and Electronic Business (2019).
S. Shafi, G. A. Ansari, Proceedings of the International Conference on Smart Data Intelligence (ICSMDI 2021) (2021). Doi:http://dx.doi.org/10.2139/ssrn.3852590
H. Naz, S. Ahuja, Journal of Diabetes & Metabolic Disorders,19 (2020). Doi:https://doi.org/10.1007/s40200-020-00520-5
A. Dutta, M. K. Hasan, M. Ahmad, M. A. Awal, M. A. Islam, M. Masud, H. Meshref, International Journal of Environmental Research and Public Health 19(19),12378 (2022).
H. Zhou, R. Myrzashova, and R. Zheng, EURASIP Journal on Wireless Communications and Networking, 1 (2020). DOI: https://doi.org/10.1186/s13638-020-01747-2
A. M. Posonia, S. Vigneshwari, D. J. Rani, 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS) (2020). Doi:https://doi.org/10.1109/ICISS49785.2020.9316001
M. Radja, A. W. R. Emanuel, 2019 5th International Conference on Science in Information Technology (ICSITech) (2019). Doi:https://doi.org/10.1109/ICSITech46713.2019.8987479
A. A. Zulfikar, W. A. Kusuma, 2019 International Conference on Advanced Computer Science and Information Systems (ICACSIS) (2019). Doi:https://doi.org/10.1109/ICACSIS47736.2019.8979989.
K. M. Varma, D. B. Panda, Journal of Emerging Technology and Innovation Research 6(6),522 (2019).
A. K. Sahoo, C. Pradhan, H. Das, Nature Inspired Computing for Data Science (2020). Doi:https://doi.org/10.1007/978-3-030-33820-6_8
Q. Liu, M. Zhang, Y. He, L. Zhang, J. Zou, Y. Yan, Y. Guo, Predicting the risk of incident type 2 diabetes mellitus in Chinese elderly using machine learning techniques, In Journal of Personalized Medicine 12(6), 905 (2022).
A. Ashiquzzaman, A. K. Tushar, M. R. Islam, D. Shon, K. Im, J. H. Park, IT Convergence and Security 2017 (2018). Doi:https://doi.org/10.1007/978-981-10-6451-7_5
K. Kannadasan, D. R. Edla, V. Kuppili, Clinical Epidemiology and Global Health 7(4), 530 (2019).Doi:https://doi.org/10.1016/j.cegh.2018.12.004
R. Miotto, L. Li, B. A. Kidd, J. T. Dudley, Scientific reports 6(1), 1 (2016).
K. S. Ryu, S. W. Lee, E. Batbaatar, J. W. Lee, K. S. Choi, H. S. Cha, Applied Sciences 10(1), 421 (2020).
S. Lekha, M. Suchetha, IEEE journal of biomedical and health informatics 22(5), 1630 (2017). Doi:https://doi.org/10.1109/JBHI.2017.2757510
F. Anwar, M. Y. Ejaz, A. Mosavi, Informatics in Medicine Unlocked 21(100482), (2020). Doi:https://doi.org/10.1016/j.imu.2020.100482
K. Huang, A. Hussain, Q. F. Wang, R. Zhang, Deep learning: fundamentals, theory and applications (2019).
F. Tamin, N. M. S. Iswari, 2017 4th International Conference on New Media Studies (CONMEDIA) (2017). Doi:https://doi.org/10.1109/CONMEDIA.2017.8266024
M. Shardlow, "An analysis of feature selection techniques", The University of Manchester (2016).
A. M. Javid, S. Das, M. Skoglund, S. Chatterjee, ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2021). Doi:https://doi.org/10.1109/ICASSP39728.2021.9414269
V. Michalski, V. Voleti, S. E. Kahou, A. Ortiz, P. Vincent, C. Pal, D. Precup, arXiv preprint arXiv:1908.00061 (2019).
S. Park, N. Kwak, Computer Vision–ACCV 2016: 13th Asian Conference on Computer Vision, Revised Selected Papers, 189 (2017). Doi:https://doi.org/10.1007/978331954184-6_12
K. Ong, S. C. Haw, K. W. Ng, Proceedings of the 2019 2nd International Conference on Computational Intelligence and Intelligent Systems (2019). Doi:https://doi.org/10.1145/3372422.3372444

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 J. Basrah Res. (Sci.)

This work is licensed under a Creative Commons Attribution 4.0 International License.