Survey: Privacy-Preserving in Deep Learning based on Homomorphic Encryption

Authors

  • Sura Abdullah Department of Computer Sciences, University of Technology, Baghdad, Iraq

DOI:

https://doi.org/10.56714/bjrs.48.1.2

Keywords:

Homomorphic Encryption, Deep Learning, Privacy-Preserving.

Abstract

When deep learning techniques succeed, the amount of data accessible for training grows rapidly, the main successor is the collecting of user data at scale in huge enterprises. Because users' data is sensitive, and the manner of preserving this information (pictures and audio recordings) indefinitely, data collecting raises privacy concerns. The terms privacy and confidentiality are related to avoiding sharing this information, and deep learning cannot be accrued on a larger scale in the amount of data. There are some challenges in machine learning algorithms when needing to access data for the training process. There several technologies in deep learning for privacy-preserving have been evolving to assign the issues, including the multi-lateral computation secrecy and the symmetric encryption in the term of the neural network. This survey deals with the deep learning techniques concerning the privacy issue mainly related to input data and the ability of interesting directions in these learning processes. Finally, as a side contribution, we analyze and introduce some variations to the bootstrapping technique of deep learning. That offers an improved parameter in efficiency at the cost of increasing privacy.

Downloads

Download data is not yet available.

References

D. van, D. Sander, preprint arXiv 1706, 06302 (2017).

T. S. Ahmed, M. A. Sura, International Conference on Advanced Computer Science Applications and Technologies (ACSAT) 23(3), 238 (2012).

J. Bolibar, R. Antoine, G. Isabelle, G. Clovis, C. Thomas, S. Eric, The Cryosphere 14(2), 565 (2020).

M. Hao, Y. Hwang, K. Wang, IEEE Access 5(6), 8869 (2017).

D. Zhang, X. Chen, D. Wang, J. Shi, In: IEEE Third International Conference on Data Science in Cyberspace 70(6), 652 (2018).

S. Reza, S. Vitaly, In Indrajit Ray, Conference on Computer and Communications Security 72, 1310 (2015).

G. Ian, B. Yoshua, C. Aaron, MIT Press 105, 12 (2016).

Y. LeCun, P. Haffner, L. Bottou, Y. Bengio, Springer 1681(19), 319 (1999).

V. Sze, Y. H. Chen, T.J. Yang, Proceedings of the IEEE 105(12), 2295 (2017).

M. Hao, H. Li, X. Luo, G. Xu, H. Yang, S. Liu, IEEE Trans. Ind. Inform 17(8), 80 (2019).

M. V. Valueva, N.N. Nagornov, P. A. Lyakhov, G. V. Valuev, N. I. Chervyakov, Mathematics and Computers in Simulation 3, 83 (2020).

S. Reza, S. Vitaly, In Proc. of ACM SIGSAC Conf. on Computer and Communications Security 21,1310 (2015).

S. Ioffe, C. Szegedy, arXiv preprint 1502, 03167 (2015).

E. Hesamifard, H. Takabi, M. Ghasemi, arXiv 1711, 05189 (2017).

W. Liu, F. Pan, X. A. Wang, Y. Cao, International Conference on Network-Based Information Systems 62, 752 (2017).

A. Senosi, G. Sibiya, IEEE AFRICON, Cape Town 93, 849 (2017).

V. Anamaria, I. N. Cosmin, P. Andrei, S. Constantin, M. I. Lucian, Computational and Mathematical Methods in Medicine 250, 26 (2020).

X. Ma, X. Chen, X. Zhang, Information Sciences 481, 507 (2019).

K. Chaudhuri, C. Monteleoni, A.D. Sarwate, J. Mach. Learn. Res 12, 1069 (2011).

B. Amine, D. Abdelouahid, C. Yacine, Elsevier B.V. 384, 21 (2020).

L. Ping, L. Jin, H. Zhengan, T. Li, C. Z. Gao, S. M. Yiu, K. Chen, Future Generation Computer Systems 74, 76 (2017).

L. Lyu, X. He, Y. W. Law, M. Palaniswami, Proceedings of the ACM on Conference on Information and Knowledge Management 32, 1219 (2020).

L. Phong, T. T. Phuong, IEEE Transactions on Information Forensics 72, 1809 (2019).

V. Hartmann, R. West, arXiv preprint 1906, 11993 (2019).

H. Wang, Y. Fu, K. Xu, H. Mi, Y. Wang, In IEEE International Conference on Service-Oriented System Engineering (SOSE) 19, 275 (2019).

M. Asad, A. Moustafa, T. Ito, Appl. Sci 10(2864), 3390 (2020).

K. Huang, X. Liu, S. Fu, D. Guo, M. Xu, IEEE Transactions on Dependable and Secure Computing 70, 55 (2019).

A. Durrant, M. Markovic, D. Matthews, D. May, G. Leontidis, J. Enright, Glob. Food Secure 28(100493), 40 (2021).

C. Niţă, A. Vizitiu, A. Puiu, C. Suciu, L. M. Itu, In IEEE International Symposium on Medical Measurements and Applications (MeMeA) 20, 1 (2019).

Sirichotedumrong, Warit, K. Hitoshi, 28th European Signal Processing Conference (EUSIPCO) 2021.

E. Chang, C. H. Yu, C. N. Chou, In IEEE Conference on Multimedia Information Processing and Retrieval (MIPR) 33, 343 (2019).

Downloads

Published

30-06-2022

How to Cite

Abdullah, S. (2022). Survey: Privacy-Preserving in Deep Learning based on Homomorphic Encryption. Basrah Researches Sciences, 48(1), 10–22. https://doi.org/10.56714/bjrs.48.1.2

Issue

Section

Articles