Improve the approximation order of Bernstein type operators

Authors

  • Mustafa K. Shehab Department of Mathematics, College of Sciences, University of Basrah, Basrah, Iraq.
  • Amal K. Hassan Department of Mathematics, College of Sciences, University of Basrah, Basrah, Iraq.

DOI:

https://doi.org/10.56714/bjrs.48.2.4

Keywords:

Bernstein operators, simultaneous, approximation, Voronovskaja-type, Asymptotic formula, Modulus of continuity

Abstract

In this study, we present a generalization of the well-known Bernstein operators based on an odd positive integer r denoted by K_(n,r) (f;x), first, we begin by studying the simultaneous approximation where we prove that the operator K_(n,r)^((s) ) (f;x) convergence to the function f^((s) ) (x) then we introduce and prove the Voronovskaja-type asymptotic formula  when (r=3) giving us the order of approximation O(n^(-2) )  which is better than the order of the classical Bernstein operators O(n^(-1) ) followed  by the error theorem and at the end, we give a numerical example to show the error of a test function and its first derivative taking different values of .

 

 

Downloads

Download data is not yet available.

References

S.N. Bernstein, Soc. Math. Charkow Sér 13, 1 (1912).

F.Schurer,“On linear positive operators in approximation theory” doctoral thesis. Dept of Applied Mathematics., Univ of Technology., Delft., Netherlands,1965.

A. Lupas, Seminar on numerical and statistical calculus 9, 85 (1987).

G. Phillips, Ann, Numer. Math. 4, 511 (1997).

I.A. Abdul Samad, A.J. Mohammad, J. Basrah Res. (Sci.) 47(1), 113 (2021).

H.J. Sadiq, Basrah Journal of Science 37(3), 412 (2019).

S.A. Hussein, A.J. Mohammad, Basrah Journal of Science 39(3), 329(2021).

A.J. Mohammad, A.K.Hassan, Basrah Journal of Agricultural Sciences 40(3), 65 (2014).

A.J. Mohammad, A.K. Hassan, Basrah Journal of Science 31(1), 28 (2013).

A.K. Hassan, Journal of University of Babylon for Pure and Applied Sciences 26, 36 (2018).

A. Pallini, Statistica 65(2), 169 (2005).

A.J. Mohammad, A.K. Hassan, Iraqi Journal of Science 62(5), 1666 (2021)

G.G. Lorentz, “Bernstein polynomials in real domain,”in Bernstein polynomials. Toronto, 1953, ch1, (1953).

Downloads

Published

30-12-2022

How to Cite

Shehab, M. K., & Hassan, A. K. (2022). Improve the approximation order of Bernstein type operators. Basrah Researches Sciences, 48(2), 35–43. https://doi.org/10.56714/bjrs.48.2.4

Issue

Section

Articles