Synthesis, thermodynamic and spectroscopic study of violurate salt

Authors

  • Huda Nouri Abdulzahra Department of Chemistry, College of Education for pure sciences, University of Basrah, Basrah, Iraq.
  • Sadiq M.H Ismael Department of Chemistry, College of Education for pure sciences, University of Basrah, Basrah, Iraq.
  • Faeza Abdulkareem Almashal Department of Chemistry, College of Education for pure sciences, University of Basrah, Basrah, Iraq.

DOI:

https://doi.org/10.56714/bjrs.50.1.17

Keywords:

DFT, hyperpolarizability, polarizability, violurate salt

Abstract

The organic salts are a broad class of ionic chemicals with a variety of properties. Scientists have an interest in violurate salts because of their bright color and crystal structure.  In this study, 4-chloroanilinium violurate salt was synthesized and identification using infrared spectroscopy, 13C NMR spectroscopy and Electrospray ionization (ESI). Density functional theory (DFT) calculations have been performed using B3LYP/6-31++G**, and CAM-B3LYP/6-31++G** levels of theory. Practically, chloroanilinium ion (M+H)+ has a relative abundance of 100% in ESI+, indicating its excellent stability. The protonation formula for violuric acid (VA+H)+ shows instability, despite the observation of a low abundance of the (VA+3H)3+ ion. DFT calculations demonstrate the exothermic nature of the salt formation reaction. The calculated enthalpy change is -26.861kJ in the B3LYP/6-31++G** level of theory and -31.82kJ in the CAM-B3LYP/6-31++G** level of theory

 

Downloads

Download data is not yet available.

References

Y. Xia, J.-J. Zhou, Y.-Y. Gong, Z.-J. Li, and E. Y. Zeng, “Strong influence of surfactants on virgin hydrophobic microplastics adsorbing Ionic organic pollutants,” Environmental Pollution, vol. 265, p. 115061, Oct. 2020.Doi:https://doi.org/10.1016/j.envpol.2020.115061

2-‏ Y. Pang, D. Moser, and J. Cornellà, “Pyrylium Salts: Selective Reagents for the Activation of Primary Amino Groups in Organic Synthesis,” Synthesis, vol. 52, no. 04, pp. 489–503, Oct. 2019.Doi:https://doi.org/10.1055/s-0039-1690703

M. T. Donato, R. Colaço, L. C. Branco, and B. Saramago, “A review on alternative lubricants: Ionic liquids as additives and deep eutectic solvents,” Journal of Molecular Liquids, vol. 333, p. 116004, Jul. 2021.Doi:https://doi.org/10.1016/j.molliq.2021.116004.

D. Sun, X. Zhang, H. Du, L. Fang, and P. Jiang, “Application of liquid organic salt to cotton dyeing process with reactive dyes,” Fibers and Polymers/Fibers and Polymers, vol. 18, no. 10, pp. 1969–1974, Oct. 2017.Doi:https://doi.org/10.1007/s12221-017-1241-3.

S. S. Costa et al., “Kalanchosine Dimalate, an Anti-inflammatory Salt from Kalanchoe brasiliensis,” Journal of Natural Products, vol. 69, no. 5, pp. 815–818, May 2006.Doi:https://doi.org/10.1021/np050475

K. T. Mahmudov, M. N. Kopylovich, A. M. Maharramov, М. М. Курбанова, A. V. Gurbanov, and A. J. L. Pombeiro, “Barbituric acids as a useful tool for the construction of coordination and supramolecular compounds,” Coordination Chemistry Reviews, vol. 265, pp. 1–37, Apr. 2014.Doi: https://doi.org/10.1016/j.ccr.2014.01.002

V. Lorenz, P. Liebing, L. Hilfert, L. Schröder, and F. T. Edelmann, “Synthesis and structural investigation of a complete series of brightly colored alkali metal 1,3‐Dimethyl violurates,” Zeitschrift Für Anorganische Und Allgemeine Chemie, vol. 646, no. 22, pp. 1854–1860, Nov. 2020.Doi: https://doi.org/10.1002/zaac.202000356

V. Lorenz et al., “Small Compound - Big Colors: Synthesis and structural investigation of brightly colored alkaline earth metal 1,3-Dimethylviolurates,” Dalton Transactions, vol. 51, no. 20, pp. 7975–7985, Jan. 2022.Doi:https://doi.org/10.1039/d2dt00606e

B. B. Koleva et al., “Two novel violurate and squarate salts of cinchonine – Structures and physical properties,” Journal of Molecular Structure, vol. 965, no. 1–3, pp. 89–97, Feb. 2010.Doi: https://doi.org/10.1016/j.molstruc.2009.11.043

B. Ivanova et al., “Structural, spectroscopic and theoretical study of novel ephedrinum salt,” Journal of Molecular Structure, vol. 971, no. 1–3, pp. 8–11, May 2010.Doi:https://doi.org/10.1016/j.molstruc.2010.02.039

R. L. Ashkinazi and N. D. S. Llc, “US7074925B1 - N-substituted derivatives of 5-oxyiminobarbituric acid - Google Patents,” May 26, 1998.Doi:https://patents.google.com/patent/US7074925B1/en

C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Physical Review. B, Condensed Matter, vol. 37, no. 2, pp. 785–789, Jan. 1988.Doi:https://doi.org/10.1103/physrevb.37.785

A. D. Becke, “Density-functional thermochemistry. I. The effect of the exchange-only gradient correction,” Journal of Chemical Physics, vol. 96, no. 3, pp. 2155–2160, Feb. 1992.Doi:https://doi.org/10.1063/1.462066

T. Yanai, D. P. Tew, and N. C. Handy, “A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP),” Chemical Physics Letters, vol. 393, no. 1–3, pp. 51–57, Jul. 2004.Doi:https://doi.org/10.1016/j.cplett.2004.06.011

J. Speight, Lange’s Handbook of Chemistry, Seventeenth Edition. McGraw Hill Professional, 2016,

E. M. AbouElleef and E. T. Helmy, “ Antibiotic oxytetracycline solvation Interactions with ethanol-aqueous mixturs at different temperatures.,” Egyptian Journal of Chemistry, vol. 63, no. 2, pp. 499–506, Feb. 2020. Doi:https://doi.org/10.21608/ejchem.2019.8105.1634

I. Mills, “Quantities, units and symbols in physical chemistry,” Blackwell Publishing Ltd,, 1993.

J. L. Nizzia, A. E. O’Leary, A. T. Ton, and C. C. Mulligan, “Screening of cosmetic ingredients from authentic formulations and environmental samples with desorption electrospray ionization mass spectrometry,” Analytical Methods, vol. 5, no. 2, pp. 394–401, Jan. 2013.Doi:https://doi.org/10.1039/C2AY25846C

S. Banerjee and S. Mazumdar, “Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte,” International Journal of Analytical Chemistry, vol. 2012, pp. 1–40, Jan. 2012.Doi:https://doi.org/10.1155/2012/282574

U. J. Al-Hamdani, H. A. Abdulwahhab, and K. A. Hussein, “Effects of terminal substituents on mesomorphic properties of Schiff base – ester mesogens and DFT calculations,” Liquid Crystals, vol. 49, no. 14, pp. 1998–2007, Jul. 2022.Doi:https://doi.org/10.1080/02678292.2022.2091803

S. Ismael, F. AL-Mashal, and B. Saeed “Influence of solvents on the 1H-NMR chemical shifts of 4-(4-acetyl-5-methyl-1H-1, 2, 3-triazol-1-yl)-N-(6-chloropyridazin-3-yl) benzene sulfonamide,” Nigerian Research Journal of Chemical Sciences, vol. 11, no. 1, 2023,

J. W. Ochterski, “Thermochemistry in gaussian”. Gaussian Inc, vol. 1, no. 1, ‏(2000).

R. V. Otkjær, H. H. Jakobsen, C. M. Tram, and H. G. Kjaergaard, “Calculated hydrogen shift rate constants in substituted alkyl peroxy radicals,” the Journal of Physical Chemistry. A., vol. 122, no. 43, pp. 8665–8673, Sep. 2018.Doi:https://doi.org/10.1021/acs.jpca.8b06223

M. Veit, D. M. Wilkins, Y. Yang, R. A. DiStasio, and M. Ceriotti, “Predicting molecular dipole moments by combining atomic partial charges and atomic dipoles,” Journal of Chemical Physics, vol. 153, no. 2, Jul. 2020.Doi:https://doi.org/10.1063/5.0009106

S., Moldoveanu, and V. David, Essentials in modern HPLC separations. Amsterdam, Netherlands: Elsevier. (2013).

J. R. Sabin, M. C. Zerner, E. Brändas, and D.Hanstrop, Advances in Quantum Chemistry. San Diego: Academic Press. (1998).

Z. Sekkat, and W. Knoll, Photoreactive Organic Thin Films. Amsterdam: Academic Press. (2002).

M. G. Vivas et al., “Interpreting the First-Order electronic hyperpolarizability for a series of octupolar Push–Pull triarylamine molecules containing trifluoromethyl,” Journal of Physical Chemistry. C, vol. 119, no. 22, pp. 12589–12597, May 2015.Doi:https://doi.org/10.1021/acs.jpcc.5b02386

M. U. Khan, M. Ibrahim, M. Khalid, A. a. C. Braga, S. Ahmed, and A. Sultan, “Prediction of Second-Order nonlinear optical properties of D–Π–A compounds containing novel fluorene derivatives: a promising route to giant hyperpolarizabilities,” Journal of Cluster Science, vol. 30, no. 2, pp. 415–430, Jan. 2019.Doi:https://doi.org/10.1007/s1087601801489-1

Kobayashi, S., & Müllen, K. (Eds.). (2015). Encyclopedia of polymeric nanomaterials. Berlin Heidelberg: Springer Berlin Heidelberg.‏

M. Khalid et al., “First principles study of electronic and nonlinear optical properties of A–D–π–A and D–A–D–π–A configured compounds containing novel quinoline–carbazole derivatives,” RSC Advances, vol. 10, no. 37, pp. 22273–22283, Jan. 2020.Doi:https://doi.org/10.1039/D0RA02857F

H. H. Al-Hujaj et al., “Benzenesulfonamide-thiazole system bearing an azide group: Synthesis and evaluation of its optical nonlinear responses,” Optik, vol. 265, p. 169477, Sep. 2022.Doi:https://doi.org/10.1016/j.ijleo.2022.169477

A. K. Almashal, M. Q. Mohammed, Q. M. A. Hassan, C. A. Emshary, H. A. Sultan, and A. M. Dhumad, “Spectroscopic and thermal nonlinearity study of a Schiff base compound,” Optical Materials, vol. 100, p. 109703, Feb. 2020.Doi:https://doi.org/10.1016/j.optmat.2020.109703

A. Migalska‐Zalas, K. E. Korchi, and T. Chtouki, “Enhanced nonlinear optical properties due to electronic delocalization in conjugated benzodifuran derivatives,” Optical and Quantum Electronics, vol. 50, no. 11, Oct. 2018.Doi:https://doi.org/10.1007/s110820181659-x

L. Gong, C. Liu, C. Ma, W.-F. Lin, J. Lv, and X. Zhang, “Theoretical study on the electronic structure and second-order nonlinear optical properties of benzannulated or selenophene-annulated expanded helicenes,” RSC Advances, vol. 9, no. 30, pp. 17382–17390, Jan. 2019.Doi: https://doi.org/10.1039/C9RA01136F

Synthesis, thermodynamic and spectroscopic study of violurate salt

Downloads

Published

30-06-2024

How to Cite

Abdulzahra, H. N., Ismael, S. M., & Almashal, F. A. (2024). Synthesis, thermodynamic and spectroscopic study of violurate salt. Basrah Researches Sciences, 50(1), 11. https://doi.org/10.56714/bjrs.50.1.17

Issue

Section

Articles