Finite Difference Approximation with the Quadrature Method for Solving Fredholm Integro-Differential Equations of Fractional Order
DOI:
https://doi.org/10.56714/bjrs.51.2.1Keywords:
Fractional calculus, Caputo-fractional derivative, integral-differential equation, Newton cotes quadrature technique, Trapezoidal method, Simpson’s method, forward difference approximationAbstract
In this article, effective techniques are described to solve numerically the Fredholm integro-differential equations of multi-fractional order that lie in (0,1] in the Caputo sense (FIFDEs). The approach uses finite difference approximation to Caputo derivative utilizing collocation points and is based on the quadrature rule, Trapezoidal, and Simpson process. Our method simplifies the evaluation of treatments by transforming the FIFDEs into algebraic equations with operational matrices. After calculating the Caputo derivative at a specific point using the finite difference method, we use the quadrature method, which includes the trapezoidal and Simpson rules, to create a finite difference formula for our fractional equation. Additionally, numerical examples are provided to demonstrate the validity and use of the approach as well as comparisons with earlier findings. The aforementioned procedure has been used to construct algorithms for treating FIFDEs. A MATLAB program is created to express these solutions. Furthermore, some numerical tests are provided to demonstrate the method's accuracy.
Downloads
References
[1]. A. Hayotov, S. Babaev, and B. Boytillayev, "The numerical solution of an Abel integral equation by the optimal quadrature formula," Results Appl. Math., vol. 25, 100542, Feb. 2025, DOI: 10.2139/ssrn.. 5005952. DOI: https://doi.org/10.1016/j.rinam.2025.100542
[2]. R. H. Al-Nasir, Numerical Solution of Volterra Integral Equations of the Second Kind, M.Sc. dissertation, Univ. of Technology, Baghdad, 1999.
[3]. J. Saberi-Nadjafi and M. Heidari, “Solving linear integral equations of second kind with repeated modified trapezoid quadrature method,” Appl. Math. Comput., vol. 189, pp. 980–985, Jun. 2007. DOI: 10.1016/j.amc.2006.11.165. DOI: https://doi.org/10.1016/j.amc.2006.11.165
[4]. S. Rahbar and E. Hashemizadeh, “A computational approach to the Fredholm integral equation of the second kind,” in Proc. World Congr. Eng., London, U.K., vol. II, pp. 978–988, Jul. 2008.
[5]. M. J. Emamzadeh and M. T. Kajani, “Nonlinear Fredholm integral equation of the second kind with quadrature methods,” J. Math. Ext., vol. 4, no. 2, pp. 51–58, 2010. DOI: 10.1155/2013/426916. DOI: https://doi.org/10.1155/2013/426916
[6]. S. A. Isaacson and R. M. Kirby, “Numerical solution of linear Volterra integral equations of the second kind with sharp gradients,” J. Comput. Appl. Math., vol. 235, pp. 4283–4301, Feb. 2011. DOI: 10.1016/j.cam.2011.03.029. DOI: https://doi.org/10.1016/j.cam.2011.03.029
[7]. R. Saadati, B. Raftari, H. Adibi, S. M. Vaezpour, and S. Shakeri, “A comparison between the variational iteration method and trapezoidal rule for solving linear integro-differential equations,” World Appl. Sci. J., vol. 4, pp. 321–325, 2008.
[8]. M. A. W. Al-Jawary, Numerical Methods for System of Integral Equations, M.Sc. dissertation, Univ. of Baghdad, Baghdad, 2005.
[9]. S. S. Ahmed and S. A. Hamasalih, “Numerical treatment of the most general linear Volterra integro-fractional differential equations with Caputo derivatives by quadrature methods,” J. Math. Comput. Sci., vol. 2, pp. 1293–1311, 2012.
[10]. S. S. Ahmed and S. J. Mohammedfaeq, “Operational matrix of generalized block pulse function for solving fractional Volterra–Fredholm integro-differential equations,” J. Southwest Jiaotong Univ., vol. 57, pp. 39-59, 2022. DOI: 10.35741/issn 0258-2724.57.3.4. DOI: https://doi.org/10.35741/issn.0258-2724.57.3.4
[11]. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations. Netherlands: Elsevier, 2006.
[12]. M. R. Ahmed, S. S. Ahmed, and P. O. Sabir, “Approximate Solution to The System of Nonlinear Volterra Integro-Fractional Differential Equations with Variable Coefficients Using Linear B-Spline Functions,” J. SouthWest Jiaotong Univ., vol. 59, no. 4, 2024, DOI: 10.35741/issn 0258-2724.59.4.26. DOI: https://doi.org/10.35741/issn.0258-2724.59.4.26
[13]. S. S. Ahmed and S. J. Mohammedfaeq, “Bessel collocation method for solving Fredholm–Volterra integro-fractional differential equations of multi-high order in the Caputo sense,” Symmetry, vol. 13, p. 2354, Dec. 2021. DOI: 10.3390/sym13122354. DOI: https://doi.org/10.3390/sym13122354
[14]. S. S. Ahmed, On System of Linear Volterra Integro-Fractional Differential Equations, Ph.D. dissertation, Univ. of Sulaimani, Sulaymaniyah, 2009.
[15]. F. Mainardi, Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models, World Scientific, 2022.
[16]. S.S. Ahmed, H.A. Rasol, Numerical Computation of Mixed Volterra–Fredholm Integro-Fractional Differential Equations by Using Newton-Cotes Methods, Symmetry 2022, 14(8), 1693; DOI: 10.3390/sym14081693. DOI: https://doi.org/10.3390/sym14081693
[17]. K. E. Atkinson, An Introduction to Numerical Analysis, 2nd ed., John Wiley & Sons, 1989.
[18]. R. L. Burden and J. D. Faires, Numerical Analysis, 9th ed., Int. Thomson Publishing, 2011.
[19]. H. A. M. Saed Ben Hamdin and F. S. M. Musbah, “Hybrid triple quadrature rule blending some Gauss-type rules with the classical or the derivative-based Newton-Cotes-type rules,” Al-Mukhtar J. Basic Sci., vol. 21, no. 2, pp. 63-72, 2023. Doi: 10.54172/et373z10 DOI: https://doi.org/10.54172/et373z10
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Basrah Researches Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.





