Discrete WRM using Tau and Galerkin Techniques to Solve Multi-Higher Fractional Order Integro-Differential Equations of the Fredholm type
DOI:
https://doi.org/10.56714/bjrs.51.2.12Keywords:
Fractional order, Integro-differential equation, Fredholm type, Caputo derivative, Legendre polynomials, Chebyshev polynomials, Tau and Galerkin methods, Clenshaw-Curti's formulaAbstract
The goal of this article is to create and implement novel approaches for utilizing shifted Legendre and Chebyshev polynomials to solve multi-fractional order Fredholm integro-differential equations (FIDEs). The Tau and Galerkin methods will be used in conjunction with the discrete weighted residual approach. The Clenshaw-Curtis quadrature formula will be employed computationally to evaluate the integral terms. In order to identify orthogonal coefficients for approximate solutions, this study uses an operational matrix to transform FIDEs of the fractional orders into a system of linear algebraic equations. In order to obtain approximate solutions for the equation, this procedure enables the development of algorithms for each method. Additionally, the technique's validity, applicability, and similarities with previous results are illustrated and contrasted using numerical examples. Most applications are run on a computer with MATLAB V.9.7 installed
Downloads
References
[1] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations. Amsterdam, The Netherlands: Elsevier, 2006.
[2] I. Podlubny, Fractional Differential Equations. San Diego, CA, USA: Academic Press, 1999.
[3] R. M. Ganji, H. Jafari, and S. Nemati, “A new approach for solving integro-differential equations of variable order,” J. Comput. Appl. Math., vol. 379, Art. no. 112946, Dec. 2020, doi: 10.1016/j.cam.2020.112946. DOI: https://doi.org/10.1016/j.cam.2020.112946
[4] K. O. Kareem, M. O. Olayiwola, M. O. Ogunniran, A. O. Asimiyu, A. O. Yunus, K. A. Adedokun, J. A. Adedeji, and A. I. Alaje, “Approximating higher order linear Fredholm integro-differential equations by an efficient Adomian decomposition method,” Istanbul J. Math., vol. 2, no. 1, pp. 44–54, 2024, doi: 10.26650/ijmath.2024.00015. DOI: https://doi.org/10.26650/ijmath.2024.00015
[5] A. Abd-Elall, A. A. S. Zaghrout, K. R. Raslan, and K. K. Ali, “On the analytical and numerical study for nonlinear Fredholm integro-differential equations,” Appl. Math. Inf. Sci., vol. 14, no. 5, pp. 921–929, 2020, doi: 10.18576/amis/140520. DOI: https://doi.org/10.18576/amis/140520
[6] H. Hilmi, R. F. Mahmood, and S. S. Hama, “Existence and uniqueness of solution for boundary value problem of fractional order,” Tikrit J. Pure Sci., vol. 29, no. 2, 2024, doi: 10.25130/tjps.v29i2.1562. DOI: https://doi.org/10.25130/tjps.v29i2.1562
[7] A. A. El-Sayed, S. Boulaaras, and N. H. Sweilam, “Numerical solution of the fractional-order logistic equation via the first-kind Dickson polynomials and spectral tau method,” Math. Methods Appl. Sci., vol. 46, no. 7, pp. 8004–8017, May 2023, doi: 10.1002/mma.7345. DOI: https://doi.org/10.1002/mma.7345
[8] S. S. Ahmed and S. J. Mohammedfaeq, “Bessel collocation method for solving Fredholm–Volterra integro-fractional differential equations of multi-high order in the Caputo sense,” Symmetry, vol. 13, no. 12, Art. no. 2354, 2021, doi: 10.3390/sym13122354. DOI: https://doi.org/10.3390/sym13122354
[9] E. Imamoglu, “Hermite interpolation with Dickson polynomials and Bernstein basis polynomials,” Eskisehir Tech. Univ. J. Sci. Technol. B, vol. 11, no. 2, pp. 158–166, 2023, doi: 10.20290/estubtdb.1279073. DOI: https://doi.org/10.20290/estubtdb.1279073
[10] M. I. Syam and B. S. Attili, “Weighted residual method for obtaining positive solutions of two-point nonlinear boundary value problems,” Appl. Math. Comput., vol. 176, pp. 775–784, 2006, doi: 10.1016/j.amc.2005.10.026. DOI: https://doi.org/10.1016/j.amc.2005.10.026
[11] S. S. Ahmed and M. R. Ahmed, “The weighted residual method in solution of more general nonlinear integro-fractional differential equation of Volterra–Hammerstein type with variable coefficients,” J. Zankoy Sulaimani A, vol. 21, no. 1, pp. 127–144, Jun. 2019, doi: 10.17656/jzs.10751. DOI: https://doi.org/10.17656/jzs.10751
[12] I. A. Dhari and M. M. Mustafa, “Numerical solution of linear Volterra integral equation of the second kind with delay using Lagrange polynomials,” Iraqi J. Sci., vol. 65, no. 3, pp. 1541–1547, 2024, doi: 10.24996/ijs.2024.65.3.30. DOI: https://doi.org/10.24996/ijs.2024.65.3.30
[13] J. Mi and J. Huang, “Collocation method for solving two-dimensional nonlinear Volterra–Fredholm integral equations with convergence analysis,” J. Comput. Appl. Math., vol. 428, Art. no. 115188, Aug. 2023, doi: 10.1016/j.cam.2023.115188. DOI: https://doi.org/10.1016/j.cam.2023.115188
[14] Y. Liu, Z. Zhao, and Y. Zhang, “Approximate solutions to fractional differential equations,” Appl. Math. Mech. (Engl. Ed.), vol. 44, pp. 1791–1802, 2023, doi: 10.1007/s10483-023-3041-9. DOI: https://doi.org/10.1007/s10483-023-3041-9
[15] S. S. Ahmed and S. J. Mohammedfaeq, “Operational matrix of generalized block pulse function for solving fractional Volterra–Fredholm integro-differential equations,” J. Southwest Jiaotong Univ., vol. 57, pp. 39–59, 2022, doi: 10.35741/issn.0258-2724.57.3.4. DOI: https://doi.org/10.35741/issn.0258-2724.57.3.4
[16] M. R. Ahmed, S. S. Ahmed, and P. O. Sabir, “Approximate solution to the system of nonlinear Volterra integro-fractional differential equations with variable coefficients using linear B-spline functions,” J. Southwest Jiaotong Univ., vol. 59, no. 4, 2024, doi: 10.35741/issn.0258-2724.59.4.26. DOI: https://doi.org/10.35741/issn.0258-2724.59.4.26
[17] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Singapore: World Scientific, 2022.
[18] S. A. HamaSalih, Some Computational Methods for Solving Linear Volterra Integro-Fractional Differential Equations, M.Sc. thesis, Univ. of Sulaimani, Sulaymaniyah, Iraq, 2011.
[19] D. C. Zahir, Numerical Solutions for the Most General Multi-Higher Fractional Order Linear Integro-Differential Equations of Fredholm Type in Caputo Sense, M.Sc. thesis, Univ. of Sulaimani, Sulaymaniyah, Iraq, 2017.
[20] P. Grandclément and J. Novak, “Spectral methods for numerical relativity,” Living Rev. Relativ., vol. 12, no. 1, 2009, doi: 10.12942/lrr-2009-1. DOI: https://doi.org/10.12942/lrr-2009-1
[21] D. C. Zahir, S. S. Ahmed, and S. J. Mohammedfaeq, “A midpoint quadratic approach for solving numerically multi-order fractional integro-differential equation,” J. Univ. Babylon Pure Appl. Sci., vol. 33, no. 3, 2025, doi: 10.29196/jubpas.v33i3.5974. DOI: https://doi.org/10.29196/jubpas.v33i3.5974
[22] J. P. Boyd, Chebyshev and Fourier Spectral Methods. New York, NY, USA: Dover Publications, 2000.
[23] J. Shen, “Efficient spectral-Galerkin methods III: Polar and cylindrical geometries,” SIAM J. Sci. Comput., vol. 18, no. 6, pp. 1583–1604, 1997, doi: 10.1137/S1064827595295301. DOI: https://doi.org/10.1137/S1064827595295301
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Basrah Researches Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.





