Using Genetic Algorithm for DNA Profile Matching
DOI:
https://doi.org/10.56714/bjrs.49.1.2Keywords:
Genetic Algorithm, DNA profiling, Bioinformatics, DNA forensicAbstract
The DNA is used in forensic investigations to identify suspects and victims at crime scenes. However, manual matching of DNA profiles is difficult and error-prone, especially in large databases. In Iraq, technology for DNA matching is limited, making manual matching the only option. Regenerate. In this work, we propose a Genetic Algorithm (GA) for DNA dataset matching to provide simple and user-friendly software to be used by law enforcement agencies in Iraq. The genetic algorithm is a type of heuristic search method used in computing science and artificial intelligence. It is based on the theory of natural selection and evolutionary biology and is used to find the best solutions to search problems. Genetic algorithm is robust for searching through big, complicated datasets. Thus, in this paper, the GA is the algorithm of choice to achieve the goal of DNA matching search. The used dataset is actual data that have been collected from the Ministry of Interior at the Basra Investigation Center. Finally, the python simulation results show 100% accuracy where the proposed method managed to find the DNAs under consideration precisely.
Downloads
References
L.M. Macías-García, M. Martínez-Ballesteros, J.M. Luna-Romera, J.M. García-Heredia, J. García-Gutiérrez, J.C. Riquelme-Santos, Artif Intell Med 110, 101976 (2020).
F. Celli, F. Cumbo, E. Weitschek, Big Data Research 13, 21 (2018).
R. Touati, I. Messaoudi, A. E. Oueslati, Z. Lachiri, M. Kharrat, IRBM 42(3), 154 (2021).
Ü. Atila, Y. Y. Baydilli, E. Sehirli, M. K. Turan, Comput Methods Programs Biomed 186, 105192 (2020).
Y. Wang, M. Alangari, J. Hihath, A. K. Das, M. P. Anantram, BMC Genomics 22(1), 1(2021).
M. Tahir, M. Hayat, K. T. Chong, Neural Networks 129, 385 (2020).
H. Alotaibi, F. Alsolami, R. Mehmood, International Journal of Advanced Computer Science and Applications 12(11), 130 (2021).
A. Zaguia, D. Pandey, S. Painuly, S. K. Pal, V. K. Garg, N. Goel, Comput Intell Neurosci, 2022, (2022).
G. Zhong, T. Li, W. Jiao, L.-N. Wang, J. Dong, C.-L. Liu, Neurocomputing, 382, 140 (2020).
M. Inutsuka, “Set-level gene expression data analysis with machine learning,” PhD thesis, Czech Technical University in Prague, Prague, Czech, (2014).
T. Ching , J R Soc Interface 15(141), (2018).
A. Hassanat, K. Almohammadi, E. Alkafaween, E. Abunawas, A. Hammouri, V. B. S. Prasath, Information (Switzerland) 10(12), 390 (2019).
D. Wu, X. Zhu, L. Tan, H. Zhang, L. Sha, X. Fan, Y. Wang, H. Kang, J. Lu, Y. Zhou, Cytogenet Genome Res, 161(4), 213 ( 2021).
B. M. O. Medan, “Introduction Chapter,” PhD Thesis, University of Basrah, Basrah, Iraq, (2019).
K. Zhou, K. Ethayarajh, D. Card, D. Jurafsky, in Proceedings ofthe 60th Annual Meeting ofthe Association for Computational Linguistics 2, 401 (2022).

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Nawal S. Jabir, Zainab A. Kahlaf

This work is licensed under a Creative Commons Attribution 4.0 International License.